Filtry
wszystkich: 13
Wyniki wyszukiwania dla: EEG (ELECTROENCEPHALOGRAPHY)
-
Balance recognition on the basis of EEG measurement.
PublikacjaAlthough electroencephalography (EEG) is not typically used for verifying the sense of balance, it can be used for analysing cortical signals responsible for this phenomenon. Simple balance tasks can be proposed as a good indicator of whether the sense of balance is acting more or less actively. This article presents preliminary results for the potential of using EEG to balance sensing....
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublikacjaMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Deep learning approach on surface EEG based Brain Computer Interface
PublikacjaIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublikacjaThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Exploring the technological dimension of Autonomous sensory meridian response-induced physiological responses
PublikacjaBackground In recent years, the scientific community has been captivated by the intriguing Autonomous sensory meridian response (ASMR), a unique phenomenon characterized by tingling sensations originating from the scalp and propagating down the spine. While anecdotal evidence suggests the therapeutic potential of ASMR, the field has witnessed a surge of scientific interest, particularly through the use of neuroimaging techniques...
-
Assessment of hearing in coma patients employing auditory brainstem response, electroencephalography, and eye-gaze-tracking
PublikacjaThe results of the study conducted by Tagliaferri et al. in 12 European countries indicate that the ratio of registered brain injury cases in Europe amounts to 150-300 per 100 000 people, with the European mean value of 235 cases per 100 000 people. The project presented in the paper assumes development of a combined metric of patients’ state remaining in coma by intelligent fusion of GCS (subjective Glasgow Coma Scale or its derivatives)...
-
Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light
PublikacjaVery recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing...
-
HCI-Based Wireless System for Measuring the Concentration of Mining Machinery and Equipment Operators
PublikacjaMaintaining stable and reliable working conditions is a matter of vital importance for various companies, especially those involving heavy machinery. Due to human exhaustion, as well as unpredicted hazards and dangerous situations, the personnel has to take actions and wisely plan each move. This paper presents a human–computer interaction (HCI)-based system that uses a concentration level measurement function to increase the safety...
-
Reactivation of seizure‐related changes to interictal spike shape and synchrony during postseizure sleep in patients
PublikacjaOBJECTIVE: Local field potentials (LFPs) arise from synchronous activation of millions of neurons, producing seemingly consistent waveform shapes and relative synchrony across electrodes. Interictal spikes (IISs) are LFPs associated with epilepsy that are commonly used to guide surgical resection. Recently, changes in neuronal firing patterns observed in the minutes preceding seizure onset were found to be reactivated during postseizure...
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublikacjaA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Independent dynamics of slow, intermediate, and fast intracranial EEG spectral activities during human memory formation
PublikacjaA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various low and high frequencies are spatiotemporally coordinated across the human brain during memory processing is inconclusive. They can either be coordinated together across a wide range of the frequency spectrum or induced in specific bands. We used a large dataset of human intracranial electroencephalography...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublikacjaComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation
PublikacjaA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial...