Filtry
wszystkich: 4
Wyniki wyszukiwania dla: LYSOSOMAL CONTENT
-
The impact of QDgreen, QDgreen−β−CD−FA, β−CD, C−2028, β−CD(C−2028), QDgreen−C−2028, and QDgreen−β−CD(C−2028)−FA nanoconjugates on lysosomal content in the cancer (H460, Du-145, LNCaP) and normal (MRC-5, PNT1A) cells
Dane BadawczeThe impact of QDgreen, QDgreen−β−CD−FA, β−CD, C−2028, β−CD(C−2028), QDgreen−C−2028, and QDgreen−β−CD(C−2028)−FA nanoconjugates on lysosomal content in the cancer (H460, Du-145, LNCaP) and normal (MRC-5, PNT1A) cells was performed by Confocal Laser Scanning Microscopy (63× magnification; ZEISS LSM T-PMT, Magdeburg, Germany). To explore the influence...
-
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy
PublikacjaSelective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the...
-
Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers
PublikacjaMultidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes,...
-
In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions
PublikacjaCysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive...