Filtry
wszystkich: 6232
wybranych: 194
-
Katalog
- Publikacje 2179 wyników po odfiltrowaniu
- Czasopisma 15 wyników po odfiltrowaniu
- Konferencje 1 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 88 wyników po odfiltrowaniu
- Wynalazki 19 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Laboratoria 2 wyników po odfiltrowaniu
- Zespoły Badawcze 4 wyników po odfiltrowaniu
- Kursy Online 557 wyników po odfiltrowaniu
- Wydarzenia 56 wyników po odfiltrowaniu
- Dane Badawcze 3300 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: DODATKI WMA
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 168 mA. Sample 115, run#2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 168 mA. Sample 115. Experiment rum #2.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 290 mA. Sample 82, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 290 mA. Sample 82. Experiment run #1.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 290 mA. Sample 82, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 290 mA. Sample 82, experiment run #2.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #2. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #1. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #5.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #5. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #5.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #5. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,3 V at 420 mA. Sample 103, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,3 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #10.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #10. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #4.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,0 V at 420 mA. Sample 103, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,0 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #9.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #9. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,3 V at 420 mA. Sample 103, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,3 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 1281 mA. Sample J51, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 1098 mA. Sample J51, experiment run #2. The current is extremely high for this type of sample to accelerate ageing processes.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #6.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #6. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #12.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #12. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #4.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #4. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #11.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #11. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 420 mA. Sample 103, run#2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #8.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #8. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 1281 mA. Sample J51, run #3.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 1098 mA. Sample J51, experiment run #3. The current is extremely high for this type of sample to accelerate ageing processes.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #7.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #7. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,0 V at 420 mA. Sample 103, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,0 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #3.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #3. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 1281 mA. Sample J51, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 1098 mA. Sample J51, experiment run #1. The current is extremely high for this type of sample to accelerate ageing processes.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #7.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #7. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 420 mA. Sample 103, run#1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #3.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #3. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #6.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #6. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #3.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #3. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103, run #1.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #2.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 64 mA. Sample 91. Image period: 5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 64 mA. Sample 91. Pictures were taken relatively fast, with period of 5 sec in order to examine the fast fluctuations of sample temperature during...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 120 mA. Sample 103. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 120 mA. Sample 103. Thermographic pictures were taken relatively fast, with period of 0,5 sec in order to examine the fast fluctuations of sample...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,3 V at 420 mA. Sample 103. Image period: 2 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,3 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken relatively fast, with period of 2 sec in order to examine the fast fluctuations of sample temperature during...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,5 V at 420 mA. Sample 103. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,5 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103. Image period: 1 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 1 sec (1 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103. Image period: 1 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 1 sec (1 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103. Image period: 1 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 1 sec in order to examine the fast fluctuations of sample temperature during charging - discharging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #2. Image period: 1 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 1 sec (1 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #3. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #2. Image period: 0,5 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 0,5 sec (2 Hz) in order to examine the fast fluctuations of sample temperature during charging...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #3. Image period: 1 sec.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103. Pictures were taken with period of 1 sec (1 Hz) in order to examine the fast fluctuations of sample temperature during charging...