Publications
Filters
total: 403
Catalog Publications
Year 2024
-
Four-electron correlated integrals arising in the singly-linked Hylleraas method for atomic systems
PublicationThe subject of this thesis is the development and implementation of a method for the analytical calculation of the electronic integrals of the explicitly correlated functions of the atomic systems, particularly in the Hylleraas method with one odd correlation factor. In the course of the work, new theoretical methods were developed to obtain all considered the integrals as the closed-form analytic expression with elementary functions...
-
Hidden Tensor Structures
PublicationAny single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration...
Year 2023
-
Cosmic-Time Quantum Mechanics and the Passage-of-Time Problem
PublicationA new dynamical paradigm merging quantum dynamics with cosmology is discussed.
Year 2022
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media
PublicationOrganic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest...
Year 2021
-
Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics
PublicationNewtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New paradigms such as ‘modified Newtonian dynamics’ (MOND) change the dynamics, but do not alter the calculus. However, calculus is dependent on arithmetic, that is the ways we add and multiply numbers. For example, in special relativity we add and subtract velocities by means of addition β1⊕β2=tanh(tanh−1(β1)+tanh−1(β2)), although multiplication β1⊙β2=tanh(tanh−1(β1)⋅tanh−1(β2)),...
-
Roadmap on dynamics of molecules and clusters in the gas phase
PublicationThis roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty orders of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity...
-
Two-photon microperimetry with picosecond pulses
PublicationTwo-photon vision is a phenomenon associated with the perception of short pulsesof near-infrared radiation (900-1200 nm) as a visible light. It is caused by the nonlinear processof two-photon absorption by visual pigments. Here we present results showing the influence ofpulse duration and repetition rate of short pulsed lasers on the visual threshold. We comparedtwo-photon sensitivity maps of the retina obtained for subjects with...
Year 2020
-
A Loophole of All ‘Loophole-Free’ Bell-Type Theorems
PublicationBell’s theorem cannot be proved if complementary measurements have to be represented by random variables which cannot be added or multiplied. One such case occurs if their domains are not identical. The case more directly related to the Einstein–Rosen–Podolsky argument occurs if there exists an ‘element of reality’ but nevertheless addition of complementary results is impossible because they are represented by elements from different...
-
Determination of energy-transfer distributions in ionizing ion-molecule collisions
PublicationThe main objective of this study is to determine the energy transfer occuring in ion-molecule collisions. In order to solve this problem, we followed two approaches; the first one by validating a purely experimental method and the second one by testing a new theoretical model M3C (Microcanonical Metropolis Monte Carlo).
-
Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions
PublicationAg-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). SEM images show that the formation of nanostructures is influenced by the initial layer thickness as well as the...
-
Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow
PublicationA thermodynamic relation between perturbations of pressure and mass density in the magnetohydrodynamic flow is theoretically studied. Planar magnetohydrodynamic perturbations with the wave vector, which forms a constant angle with the equilibrium magnetic field, are under study. The theory considers thermal conduction of a plasma and the deviation from adiabaticity of a flow due to some kind of heating–cooling function. It also...
-
Investigation of rotational state-changing collisions of C2N− ions with helium
PublicationThe cross sections for rotational inelastic collisions between atoms and a molecular anion can be very large, if the anion has a dipole moment. This makes molecular anions very efficient in cooling atomic gases. We address rotational inelastic collisions of Helium atoms with the molecular anion C2N–. Here we present preliminary calculations of the potential energy surface.
-
Magnetoacoustic Heating of Plasma Caused by Periodic MagnetosoundPerturbations with Discontinuities in a Quasi-Isentropic Magnetic Gas
PublicationThe magnetoacoustic heating of plasma by harmonic or periodic saw-tooth perturbations at a trans-ducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wavevector may form an arbitrary angleθwith the equilibrium straight magnetic field. In view of variableθand plasma-β, the description of magnetosound perturbations and appropriate magnetosound heatingis fairly difficult. The scenario of...
-
Non-Diophantine Arithmetics in Mathematics, Physics and Psychology
PublicationFor a long time, all thought there was only one geometry — Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications...
-
Non-Linear Interaction of Harmonic Waves in a Quasi-Isentropic Flow of Magnetic Gas
PublicationThe diversity of wave modes in the magnetic gas gives rise to a wide variety of nonlinear phenomenaassociated with these modes. We focus on the planar fast and slow magnetosound waves in the geometryof a flow where the wave vector forms an arbitrary angleθwith the equilibrium straight magnetic field.Nonlinear distortions of a modulated signal in the magnetic gas are considered and compared to thatin unmagnetised gas. The case of...
-
On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity
PublicationMagnetosonic periodic perturbations in a uniform and infinite plasma model are considered. Damping due to compressional viscosity, electrical resistivity, and thermal conduction are taken into account, as well as some heating–cooling function, which may destroy the isentropicity of wave perturbations. The wave vector forms arbitrary angle h with the equilibrium straight magnetic field, and all perturbations are functions...
-
Positron Scattering and Annihilation in Organic Molecules
PublicationIn this paper, we address the problem of connecting positron lifetimes in liquids with collision cross sections in gases. We present the analyses of annihilation lifetime spectra of positrons in the liquid benzene, c-hexane, n-hexane, methanol and ethanol and calculations of scattering cross sections of positrons with benzene and c-hexane in the gas phase.
-
Rotational state-changing collisions of C2H− and C2N− anions with He under interstellar and cold ion trap conditions: A computational comparison
PublicationWe present an extensive range of quantum calculations for the state-changing rotational dynamics involving two simple molecular anions that are expected to play some role in the evolutionary analysis of chemical networks in the interstellar environments, C2H− (X1Σ+) and C2N− (X3Σ−), but for which inelastic rates are only known for C2H−. The same systems are also of direct interest in modeling selective photo-detachment experiments...
-
Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach
PublicationThe paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow...
-
Synthesis and hydrogen evolving catalysis of a panchromatic photochemical molecular device
PublicationA dinuclear hydrogen evolution photocatalyst [(tbbpy)2Os(tpphz)PtI2](PF6)2 (tbbpy = 4,4′-tert-butyl-2,2′-bipyridine; tpphz = tetrapyrido[3,2-a:2′,3′-c:2′′,3′′-h:2′′′,3′′′-j]phenazine) is synthesized in order to make use of the broader range of visible light absorption mitigated by the osmium center. In a first step, the activity of the complex for hydrogen evolution is investigated by evaluating the role of different electron donors...
-
Understanding the formation of metastable furan dication in collisions with ions
PublicationThis work relies on complementary theoretical and experimental studies of the processes induced by ion-furan collisions. Results of the Molecular Dynamics simulations and exploration of the energy profiles combined with coincidence mass spectrometry provide complete picture of the fragmentation of furan dication.
-
Unifying Aspects of Generalized Calculus
PublicationNon-Newtonian calculus naturally unifies various ideas that have occurred over the years in the field of generalized thermostatistics, or in the borderland between classical and quantum information theory. The formalism, being very general, is as simple as the calculus we know from undergraduate courses of mathematics. Its theoretical potential is huge, and yet it remains unknown or unappreciated.
Year 2019
-
Calculation of Vibrational Resonance Raman Spectra of Molecules Using Quantum Chemistry Methods
PublicationThe understanding and interpretation of experimental resonance Raman (RR) spectra can strongly benefit from theoretical simulations. These can be achieved by combining quantum chemistry (QC) methods to calculate the electronic and vibrational molecular properties, together with appropriate models and approximations to compute the Raman intensities. This chapter presents the main and most commonly employed approaches to calculate...
-
Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations
PublicationThe present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of...
-
Continuum wave functions for estimating the electric dipole moment: Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation
PublicationThe multiconfiguration Dirac-Hartree-Fock method is employed to calculate the continuum electron wave functions, which are then used to estimate their contribution to the atomic electric dipole moment (EDM) of 129Xe. The EDM arises from (P,T)-odd electron-nucleon tensor-pseudotensor and pseudoscalar-scalar interactions, the nuclear Schiff moment, the interaction of the electron electric dipole moment with nuclear magnetic moments,...
-
Effect of the Catalytic Center on the Electron Transfer Dynamics in Hydrogen-Evolving Ruthenium-Based Photocatalysts Investigated by Theoretical Calculations
PublicationThe light-induced relaxation pathways in the molecular photocatalyst [(tbbpy)2Ru(tpphz)PtCl2]2+ are investigated with time-dependent density functional theory calculations together with the Marcus theory of electron transfer (ET). The calculations show that metal (Ru) to ligand (tpphz) charge transfer (MLCT) triplet states are populated following an excitation in the longer wavelength range of the absorption spectrum, but that an...
-
Excitation of Non-Wave Modes by Sound of Arbitrary Frequency in a Chemically Reacting Gas
PublicationThe nonlinear phenomena in the field of high intensity sound propagating in a gas with a chemical reaction, are considered. A chemical reaction of A → B type is followed by dispersion and attenuation of sound which may be atypical during irreversible thermodynamic processes under some conditions. The first and second order derivatives of heat produced in the chemical reaction evaluated at the equilibrium temperature, density and...
-
Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory.
PublicationTime dependent density functional theory calculations are applied on a series of molecular photocatalysts of the type [(tbbpy)2M1(tpphz)M2X2]2+ (M1 = Ru, Os; M2 = Pd, Pt; X = Cl, I) in order to provide information concerning the photochemistry occurring upon excitation of the compounds in the visible region. To this aim, the energies, oscillator strengths and orbital characters of the singlet and triplet excited states are investigated....
-
Impact of Boundary Conditions on Acoustic Excitation of EntropyPerturbations in a Bounded Volume of Newtonian Gas
PublicationExcitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoreticallyconsidered in this work. The dynamic equation for an excess density which specifies the entropy mode,has been obtained by means of the method of projections. It takes the form of the diffusion equation withan acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient isproportional...
-
Influence of orientational disorder on the optical absorption properties in hybrid metal‐halide perovskite CH3NH3PbI3. A combined DFT/TD‐DFT and experimental study.
PublicationAn experimental and theoretical investigation is reported to analyze the relation between the structural and absorption properties of CH3NH3PbI3 in the tetragonal phase. More than 3000 geometry optimizations were performed in order to reveal the structural disorder and to identify structures with the lowest energies. The electronic structure calculations provide an averaged band gap of 1.674 eV, which is in excellent agreement...
-
Low-energy positron scattering from gas-phase benzene
PublicationIn this paper we are presenting calculations of the elastic cross section of positrons with gas-phase benzene for the energy range from 0.25 eV to 9.0 eV. The calculations are done with the molecular R-matrix method for positron-scattering from poly-atomic molecules using a scaling factor to scale the electron-positron interaction. The scaling factor influences the position of the poles of the R-matrix. We adjust the scaling factor...
-
MAGNETOACOUSTIC HEATING AND STREAMING IN A PLASMA WITH FINITE ELECTRICAL CONDUCTIVITY
PublicationNonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. Plasma is assumed to be an ideal gas with a finite electrical conductivity permeated by a magnetic filed orthogonal to the trajectories of gas particles. the excitation of non-wave modes in the filed of intense magnetoacoustic perturbations, i.e., magnetoaciustic heating and streaming, is discussed. The analysis includes a derivation if instantaneous...
-
Nonlinear Interaction of Modes in a Planar Flow of a Gas with Viscous and Thermal Attenuation
PublicationThe nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differential form and thermodynamic...
-
Propagation of initially sawtooth periodic and impulsive signals in a quasi-isentropic magnetic gas
PublicationThe characteristics of propagation of sawtooth periodic and impulsive signals at a transducer are analytically studied in this work. A plasma under consideration is motionless and uniform at equilibrium, and its perturbations are described by a system of ideal magnetohydrodynamic equations. Some generic heating/cooling function, which in turn depends on equilibrium thermodynamic parameters, may destroy adiabaticity of a flow and...
-
Pupil detection supported by Haar feature based cascade classifier for two-photon vision examinations
PublicationThe aim of this paper is to present a novel method, called Adaptive Edge Detection (AED), of extraction of precise pupil edge coordinates from eye image characterized by reflections of external illuminators and laser beams. The method is used for monitoring of pupil size and position during psychophysical tests of two-photon vision performed by dedicated optical set-up. Two-photon vision is a new phenomenon of perception of short-pulsed...
-
Reexamination of the decoherence of spin registers
PublicationWe revisit the decoherence process of a multiqubit register interacting with a thermal bosonic bath. We generalize the previous studies by considering not only the register’s behavior but also a part of its environment. In particular, we are interested in information flow from the register to the environment, which we describe using recently introduced multipartite quantum state structures called spectrum broadcast structures....
-
Structure, luminescent properties and FDTD simulation of TeO2-BaO-Bi2O3-Ag:Ln3+ glass-ceramics system
PublicationTeO2-BaO-Bi2O3-Ag glass systems (TBB) co-doped with terbium and europium ions have been successfully synthesized through conventional melt-quenching technique. Heat treatment procedure at 350 °C has been conducted in order to synthesize silver nanoparticles embedded in TBB glass matrix. Structural measurements involved XRD studies that revealed no crystallization of glass structure after heat treatment at elevated temperatures....
-
Swapping Space for Time: An Alternative to Time-Domain Interferometry
PublicationYoung's double-slit experiment [1] requires two waves produced simultaneously at two different points in space. In quantum mechanics the waves correspond to a single quantum object, even as complex as a big molecule. An interference is present as long as one cannot tell for sure which slit is chosen by the object. The more we know about the path, the worse the interference. In the paper we show that quantum mechanics allows for...
-
The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids
PublicationIn this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in...
-
Theoretical studies of fragmentation processes of neutral and ionized furan molecule
PublicationThis PhD thesis focuses on the fragmentation mechanism of the furan molecule in the gas phase. The approach taken in this work comprised of three theoretical methodologies considering the dynamical, energetical and entropic aspects of the studied process. First, molecular dynamics simulations were performed. Next, the potential energy surfaces were explored at the DFT/B3LYP level of theory. Finally, a new statistical Microcanonical...
-
Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions
PublicationA ring resonator involves a scattering process where a part of the output is fed again into the input. The same formal structure is encountered in the problem of time travel in a neighborhood of a closed timelike curve (CTC). We know how to describe quantum optics of ring resonators, and the resulting description agrees with experiment. We can apply the same formal strategy to any looped quantum evolution, in particular to the...
-
Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations
PublicationBeginning with addition and multiplication intrinsic to a Koch-type curve, we formulate and solve wave equation describing wave propagation along a fractal coastline. As opposed to examples known from the literature, we do not replace the fractal by the continuum in which it is embedded. This seems to be the first example of a truly intrinsic description of wave propagation along a fractal curve. The theory is relativistically...
Year 2018
-
AMCA to TAMRA long range resonance energy transfer on a flexible peptide
PublicationFörster resonance energy transfer between 7-amino-4-methyl-3-coumarinylacetic acid, (AMCA, donor) and 5- carboxytetramethylrhodamine, (TAMRA, acceptor) bound to Lys(AMCA)-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys (TAMRA)-NH2 peptide is demonstrated by various spectroscopic techniques in glycerol at room temperature. In particular, nonexponential character of fluorescence intensity decay evidences the distance distribution between the donor...
-
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
PublicationWe address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N−1 (Heisenberg scaling) in terms of the number...
-
Au–Si plasmonic platforms: synthesis, structure and FDTD simulations
PublicationPlasmonic platforms based on Au nanostructures have been successfully synthesized by directional solidification of a eutectic from Au and the substrate. In order to determine homogeneous shape and space distribution, the influence of annealing conditions and the initial thickness of the Au film on the nanostructures was analyzed. For the surface morphology studies, SEM and AFM measurements were performed. The structure of platforms...
-
Comment on "Measurements without probabilities in the final state proposal"
PublicationThe final state proposal [G.T. Horowitz and J.M. Maldacena, J. High Energy Phys.2004(2),8 (2004)] is an attempt to relax the apparent tension betweenstring theory and semiclassicalarguments regarding the unitarity of black hole evaporation. The authors of [R. Bousso and D.Stanford, Phys. Rev. D89, 044038 (2014)] analyze thought experiments where an infalling observerfirst verifies the entanglement between early and late Hawking...
-
Decomposition of Acoustic and Entropy Modes in a Non-Isothermal Gas Affected by a Mass Force
PublicationDiagnostics and decomposition of atmospheric disturbances in a planar flow are considered in this work. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on the vertical coordinate due to external forces. The relations connecting perturbations are analytically established. These perturbations specify acoustic and entropy modes in an arbitrary stratified gas affected by a constant...