Publications
Filters
total: 772
Catalog Publications
Year 2022
-
Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response
PublicationSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and...
-
Femtosecond Er-doped fiber laser source tunable from 872 to 1075 nm for two-photon vision studies in humans
PublicationWe report the development of a widely-tunable femtosecond fiber laser system and its application for two-photon vision studies. The source is based on an Er-doped fiber laser with spectral shift up to 2150 nm, followed by a second harmonic generation module to generate a frequency-doubled beam tunable from 872 to 1075 nm. The source delivers sub-230 fs pulses with nearly-constant duration over the entire tuning range, with output...
-
Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids
PublicationFluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH...
-
Focused ion beam-based microfabrication of boron-doped diamond single-crystal tip cantilevers for electrical and mechanical scanning probe microscopy
PublicationIn this paper, the fabrication process and electromechanical properties of novel atomic force microscopy probes utilising single-crystal boron-doped diamond are presented. The developed probes integrate scanning tips made of chemical vapour deposition-grown, freestanding diamond foil. The fabrication procedure was performed using nanomanipulation techniques combined with scanning electron microscopy and focused ion beam technologies....
-
Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors
PublicationSensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e....
-
Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants
PublicationRapid industrial and urban development jointly with rising global population strongly affect the large-scale issues with drinking, groundwater, and surface water pollution. Concerns are not limited to environmental issues but also human health impact becoming serious global aspect. Organic pollution becomes a primarily serious hazard, therefore, the novel sophisticated approaches to treat them are thoroughly investigated. Among...
-
Hopping or Tunneling? Tailoring the Electron Transport Mechanisms through Hydrogen Bonding Geometry in the Boron-Doped Diamond Molecular Junctions
PublicationMechanisms of charge transport in molecular junctions involving hydrogen bonds are complex and remain mostly unclear. This study is focused on the elucidation of the electron transfer in a molecular device consisting of two boron-doped diamond interfaces bound with an aromatic linker and a hydrogen bonding surrogating molecule. The projected local density of states (PLODS) analysis coupled with transmission spectra and current−voltage...
-
Impedance Spectra of RC Model as a Result of Testing Pulse Excitation Measurement Method Dataset
PublicationThe dataset titled Impedance spectra of RC model as a result of testing pulse excitation measurement method contains the impedance spectrum of an exemplary test RC model obtained using pulse excitation. The dataset allows presentation of the accuracy of the impedance spectroscopy measuring instrument, which uses the pulse excitation method to shorten the time of the whole spectrum acquisition.
-
Impedimetric sensing of α-amino acids driven by micro-patterned 1,8-Diazafluoren-9-one into titania- boron- doped maze-like nanocarbons
PublicationThe development of impedimetric, non-faradaic label-free sensors for the detection of α-amino acids constitutes a trailblazing technology for the fast and inexpensive quantification of such biomarkers. Since α-amino acids, such as glycine and sarcosine, are basic constituents in biological processes, a variation in their concentration may be an indicator of cardiovascular diseases and metabolic disorders or neurological conditions....
-
In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope
PublicationBACKGROUND. Noninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Insights into the microbial community of treated wastewater, its year-round variability and impact on the receiver, using cultivation, microscopy and amplicon-based methods
PublicationApart from chemical constituents, wastewater treatment plant (WWTP) effluents also release microorganisms that can be important to the receiving water bodies either from a sanitary point of view, or taking to the account the biogeochemical potential of the recipients. However, little is known about the treated wastewater microbial community, its composition, seasonal changes, functions and fate in the waters of the receiver. Thus,...
-
Long-Term Measurement of Physiological Parameters – Child Dataset
PublicationThe dataset titled “Long-term measurement of physiological parameters – child is one dataset” of the bigger series named Long-term measurement of physiological parameters. The dataset contains physiological parameter measurements such as skin temperature and resistance, blood pulse, as well as the stress detection marker, which can have a value of 0 when there is no stress detected or 1 when stress appeared. Additionally, the dataset...
-
Measurement method for capacitive sensors for microcontrollers based on a phase shifter
PublicationA complete measurement method dedicated to capacitive sensors has been developed. It includes the development of hardware (an analogue interface circuit for microcontrollers with built-in times/counters and analogue comparators) and software (a measurement procedure and a systematic error calibration (correction) algorithm which is based on a calibration dictionary). The interface circuit consists of a low-pass filter and a phase...
-
Microcrystalline diamond film evaluation by spectroscopic optical coherence tomography
PublicationThis study has focused on the microcrystalline diamond film (MCD) thickness evaluation. For this purpose, optical coherence tomography (OCT) enhanced by spectroscopic analysis has been used as a method of choice. The average thickness of the tested layer was about 1.5 µm, which is below the standard 2-point OCT resolution. In this case, the usefulness of the spectroscopic analysis was confirmed for the evaluation of the thickness...
-
Microfluidic devices for photo-and spectroelectrochemical applications
PublicationThe review presents recent developments in electrochemical devices for photo- and spectroelectrochemical investigations, with the emphasis on miniaturization (i.e., nanointerdigitated complementary metal-oxide-semiconductor devices, micro- and nano-porous silicon membranes or microoptoelectromechanical systems), silica glass/microreactors (i.e., plasmonic, Raman spectroscopy or optical microcavities) or polymer-based devices (i.e.,...
-
Multi-functional sensor based on photonic crystal fiber using plasmonic material and magnetic fluid
PublicationA unique highly sensitive photonic crystal fiber is investigated based on plasmonic material and magnetic fluid (MF) for the simultaneous measurement of temperature and magnetic field sensor. The designed sensor is explored by tracing the different parameters such as birefringence, coupling length, power spectrum, and the peak wavelength of the transmission intensity. The magnetic field and temperature computation are attained...
-
Multi-pathway mechanism of polydopamine film formation at vertically aligned diamondised boron-doped carbon nanowalls
PublicationBoron-doped carbon nanowall (B:CNW) electrodes were used as a platform for studying the electropolymerisation of dopamine. Due to the unique properties of B:CNW, including the fast charge-transfer kinetics and high surface conductivity, a high degree of reversibility of redox reactions was achieved. Three separated redox peaks were observed on voltammograms and attributed to three fundamental reactions in the dopamine polymerisation...
-
Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media
PublicationOrganic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest...
-
Novel Interpolation Method of Multi-DFT-Bins for Frequency Estimation of Signal with Parameter Step Change
PublicationThe IpDFT(Interpolation Discrete Fourier Trans-form) method is one of the most commonly used non-parametric methods. However, when a parameter (frequency, amplitude or phase) step changes in the DFT period, the DFT coefficients will be distorted seriously, resulting in the large estimation error of the IpDFT method. Hence, it is a key challenge to find an IpDFT method, which not only can eliminate the effect of the step-changed...
-
Organic Vapor Sensing Mechanisms by Large-Area Graphene Back-Gated Field-Effect Transistors under UV Irradiation
PublicationThe gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced...
-
Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation
PublicationThe 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel...
-
Poly-L-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation
PublicationRecently, the interest in applying fluorescent diamond particles (FDPs) containing nitrogen-vacancy (NV) centers for enhancing the mechanical and chemical properties of some materials, biological imaging, and sensing has been expanding rapidly. The unique properties of NV centers such as intensive, time-stable fluorescence, and an electron spin, which exhibits long coherence time and may be manipulated using external stimuli, such...
-
Porous Phantoms Mimicking Tissues – Investigation of Optical Parameter Stability Over Time
PublicationIn terms of optical parameters, optical phantoms can now replace live tissues and be used to validate optical measurement methods. Therefore, whether these parameters would be maintained after storage for 6 months was examined. The absorption and scattering coefficients were obtained from the measured transmittance and reflectance measurements taken 6 months apart and then compared. All of the measurements were conducted using...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
REJESTRACJA SERII ZDJĘĆ, Z WYMUSZENIEM ZMIENNYCH WARUNKÓW OŚWIETLENIOWYCH, JAKO TECHNIKI WSPOMAGAJĄCEJ PRZY AUTOMATYCZNYM ROZPOZNAWANIU TEKSTU
PublicationW artykule przedstawiono autorskie rozwiązania problemu wykonywania zdjęć niewyraźnych tekstów na opakowaniach i niewielkich produktach. W sytuacji gdy napis posiada niską rozdzielczość (drukarka atramentowa), albo jest wykonany poprzez technikę tłoczenia, wykonanie zwykłego, pojedynczego zdjęcia daje przeważnie niezadowalające wyniki. Dzięki przedstawionym tu rozwiązaniom, znacząco polepszamy materiał wejściowy (fotografie), który...
-
Structural and electrochemical heterogeneities of boron-doped diamond surfaces
PublicationThis brief review is focussed on the recent progress in studies of the heterogeneous electrochemical behaviour of various boron-doped materials extending from zero-dimensional particles through polycrystalline or nanostructured three-dimensional surfaces. A boron-doped diamond reveals large heterogeneities induced by numerous factors, inter alia multi-faceted crystallinity, inhomogeneous boron concentration, sp2/sp3-carbon ratio,...
-
Structure and the Biochemical Potential of the Bacterial Community in Wastewater Treatment Plant Effluent and in Receiving Waters: Northern Poland Case Study
PublicationWastewater treatment processes are monitored mainly in terms of biogenic substance removal efficiency. Little is known about the treated wastewater microbiome and its influence on the recipient. In this study, a wide range of methods (cultivation, microscopic analysis, New Generation Sequencing and Real Time PCR) were employed to determine the bacterial community composition of the treated wastewater and its receiver. Preliminary...
-
Szybkie wykrywanie wirusa grypy we wczesnej fazie rozwoju za pomocą sensorów nanodiamentowych domieszkowanych borem
PublicationPrzedstawiono konstrukcję i wyniki wstępnych badań szybkiego elektrochemicznego sensora wykonanego na bazie cienkich warstw nanokrystalicznego diamentu domieszkowanego borem, który umożliwia wykrywanie śladowych ilości wirusa grypy we wczesnej fazie rozwoju. Zapewnia to identyfikację ognisk pandemii.
-
T1 RELAXATION TIME CALLIBRATION IN MAGNETIC RESONANCE IMAGING USING NANODIAMOND PHANTOMS
PublicationMRI is increasingly used in radiation treatment planning because of the excellent soft tissue contrast in the obtained images. It allows more precise definition of the boundaries between healthy tissues and those affected by cancerous lesions. To obtain good image quality, the difference in signal between two types of tissue must be significant despite the noise so it must be properly calibrated. This calibration includes...
-
Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters
PublicationThe importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls...
-
Tailoring of Optical Properties of Methacrylate Resins Enriched by HPHT Microdiamond Particles
PublicationDiamond particles have great potential to enhance the mechanical, optical, and thermal properties of diamond–polymer composites. However, the improved properties of diamond–polymer composites depend on the size, dispersibility, and concentration of diamond particles. In the present study, diamond–polymer composites were prepared by adding the microdiamond particles (MDPs) with different concentrations (0.2–1 wt.%) into polymers...
-
Temperature Sensors Based on Polymer Fiber Optic Interferometer
PublicationTemperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
The electrical, morphological and optical properties of heavily boron-doped diamond sheets as a function of methane concentration in the gas phase
PublicationBoron-doped diamonds (BDD) are known for their excellent properties such as high thermal conductivity, high mobility, low absorption in visible light, and biocompatibility. In this work, we investigated the electrical, morphological and optical properties of heavily boron-doped diamond thin sheets as a function of methane concentration in the gas phase. Free-standing diamond sheets were fabricated using a microwave plasma-assisted...
-
The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures
PublicationAdditive manufacturing, also known as 3D printing, is beginning to play an unprecedented role in developing many applications for industrial or personalized products. The conductive composite structures require additional treatment to achieve an electroactive surface useful for electrochemical devices. In this paper, the surfaces of carbon black/poly(lactic acid) CB-PLA printouts were activated by electrolysis or enzymatic digestion...
-
Towards spectral sensitivity curve for two-photon vision mechanism
PublicationAbstract Purpose: The perceived brightness of different visible light sources can be compared with photometric units based on the standardized luminosity curves (300-780nm range). As reported previously (PNAS 111(50), pp. E5445-E5454 (2014)), near-infrared (NIR) radiation can cause isomerization of visual pigments by one- or two-photon absorption. The perceived color of the stimulus is red in the case of one-photon vision (1PV)...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors
PublicationCarbon (sp3)-on-carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon-on-carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demon-strates the scalable fabrication of flexible laser-induced graphene (LIG)-boron doped diamond nanowall (BDNW) hybrid nanostructures...
-
Two-photon perimetry utilizing picosecond laser
PublicationAge-related impairments are becoming more and more severe for aging societies. The sensory organ diseases are particularly troublesome as they exclude seniors from their everyday activity. Therefore, maintaining good quality eyesight is essential for normal functioning. New medical therapies help restrain age-related changes, but still, monitoring is essential to the treatment process. Humans do not have the natural ability to...
-
Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes
PublicationIntegration of optically-active diamond particles with glass fibers is a powerful method of scaling diamond's magnetic sensing functionality. We propose a novel approach for the integration of diamond particles containing nitrogen-vacancy centers directly into the fiber core. The core is fabricated by stacking the preform from 790 soft glass canes, drawn from a single rod dip-coated with submicron diamond particles suspended in...
-
Wide-field magnetometry using nitrogen-vacancy color centers with randomly oriented micro-diamonds
PublicationMagnetometry with nitrogen-vacancy (NV) color centers in diamond has gained significant interest among researchers in recent years. Absolute knowledge of the three-dimensional orientation of the magnetic field is necessary for many applications. Conventional magnetometry measurements are usually performed with NV ensembles in a bulk diamond with a thin NV layer or a scanning probe in the form of a diamond tip, which requires a...
Year 2021
-
A measurement method for lossy capacitive relative humidity sensors based on a direct sensor-to-microcontroller interface circuit
PublicationA new time-domain measurement method for determining the capacitance and resistance values of lossy relative humidity capacitive sensors is presented. The method is based on a direct sensor-to-microcontroller interface for microcontrollers with internal analog comparators and timers. The interface circuit consists only of four reference resistors (two reference resistors if a microcontroller includes a voltage reference source),...
-
An Instantaneous Engine Speed Estimation Method Using Multiple Matching Synchrosqueezing Transform
PublicationInstantaneous rotational speed measurement of the engine is crucial in routine inspection and maintenance of an automobile engine. Since the contact measurement of rotational speed is not always available, the vibration measurement has been used for noncontact rotational speed estimation methods. Unfortunately, the accuracy of the noncontact estimation methods by analyzing engine vibration frequency is not satisfactory due to the...
-
Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements
PublicationWe proposed applying low-frequency (flicker) noise in proton-exchange membrane fuel cells under selected loads to assess their state of health. The measurement set-up comprised a precise data acquisition board and was able to record the DC voltage and its random component at the output. The set-up estimated the voltage noise power spectral density at frequencies up to a few hundred mHz. We observed the evolution of the electrical...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate
PublicationNanomaterials and assemblies of the aforementioned into complex architectures constitute an opportunity to design efficient and selective solutions to wide spread and emerging environmental issues. The limited disposal of organic matter in modern landfills generates extremely concentrated leachates characterised by high concentrations of refractory compounds. Conventional biochemical treatment methods are unsuitable, while advanced...
-
Characterization and Filtration Efficiency of Sustainable PLA Fibers Obtained via a Hybrid 3D-Printed/Electrospinning Technique
PublicationThe enormous world demand for personal protective equipment to face the current SARS-CoV-2 epidemic has revealed two main weaknesses. On one hand, centralized production led to an initial shortage of respirators; on the other hand, the world demand for single-use equipment has had a direct and inevitable effect on the environment. Polylactide (PLA) is a biodegradable, biocompatible, and renewable thermoplastic polyester, mainly...
-
Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons
PublicationChemical vapor transport (CVT) method is widely used for bulk black phosphorus (BP) fabrication. In this work, we demonstrate that CVT provides a route for the fabrication of BP nanoribbons and nanobelts. This method consists of a two-step procedure, including initial BP column growth using the CVT technique, followed by ultrasonic treatment and centrifugation. The obtained nanostructures preserve BP column dimensions, forming...
-
Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons
PublicationChemical vapor transport (CVT) method is widely used for bulk black phosphorus (BP) fabrication. In this work, we demonstrate that CVT provides a route for the fabrication of BP nanoribbons and nanobelts. This method consists of a two-step procedure, including initial BP column growth using the CVT technique, followed by ultrasonic treatment and centrifugation. The obtained nanostructures preserve BP column dimensions, forming...