ISSN:
eISSN:
Disciplines
(Field of Science):
- automation, electronics, electrical engineering and space technologies (Engineering and Technology)
- information and communication technology (Engineering and Technology)
- biomedical engineering (Engineering and Technology)
- computer and information sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 140 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 140 | Ministry scored journals list 2024 |
2023 | 140 | Ministry Scored Journals List |
2022 | 140 | Ministry Scored Journals List 2019-2022 |
2021 | 140 | Ministry Scored Journals List 2019-2022 |
2020 | 140 | Ministry Scored Journals List 2019-2022 |
2019 | 140 | Ministry Scored Journals List 2019-2022 |
2018 | 40 | A |
2017 | 40 | A |
2016 | 35 | A |
2015 | 35 | A |
2014 | 40 | A |
2013 | 40 | A |
2012 | 35 | A |
2011 | 35 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 10.4 |
Year | Points |
---|---|
2023 | 10.4 |
2022 | 9.8 |
2021 | 9.4 |
2020 | 9.7 |
2019 | 8.8 |
2018 | 7.6 |
2017 | 6.8 |
2016 | 6.6 |
2015 | 6 |
2014 | 5.8 |
2013 | 5.6 |
2012 | 5.7 |
2011 | 5.4 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 48
Catalog Journals
Year 2024
-
A Low-Profile Metal-backed Dipole Loaded with Closely Coupled Arc-shaped Open Stubs for On-metal Tag Design with Wide Frequency Tuning Capability
PublicationThis research has presented a single-layer metal-backed dipole antenna, which consists of a feedline loaded with two pairs of closely-coupled arc-shaped open stubs, for designing a metal-mountable tag that features tuning capability over a wide range of frequency. Here, the stubs can generate sufficient inductive reactance for bringing down the tag resonant frequency tunable in both the regulated UHF RFID passbands (North American...
-
D-Band High Gain Planer Slot Array Antenna using Gap Waveguide Technology
PublicationA D-band high gain slot array antenna with corporate-fed distribution network based on gap waveguide structures is proposed at 140GHz. To overcome the fabrication challenges at such high frequency, the gap waveguide technology is deployed in which good electrical contact between different parts of the waveguide structure is not required. The proposed sub-array has four radiating slots that are excited by a groove gap cavity and...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublicationApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Influence of User Mobility on System Loss and Depolarization in a BAN Indoor Scenario
PublicationIn this article, an analysis of system loss and depolarization in body area networks (BANs) for body-toinfrastructure (B2I) communications based on a measurement campaign in the 5.8 GHz band in an indoor environment is performed. Measurements were performed with an off-body antenna transmitting linearly polarized signals and dual-polarized receiving antennas carried by the user on the body. A normal distribution with a mean of...
Year 2023
-
A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360° Steerable Radiation Pattern Using Gap Waveguide Technology
PublicationConsidering the limitations of electronically steerable antennas such as limited steering span, gain degradation for large steering angles, complexity, and cost, this article is focused on the design of a simple mechanically steerable H-plane horn antenna. It is shown that since there is no need for an electrical connection between the top and bottom sections of a gap waveguide (GWG), if a sectoral horn is properly designed and realized...
-
Accelerated Parameter Tuning of Antenna Structures by Means of Response Features and Principal Directions
PublicationPopularity of numerical optimization has been steadily on the rise in the design of modern antenna systems. Resorting to mathematically rigorous parameter tuning methods is a matter of practical necessity as interactive techniques (e.g., parameter sweeping) are no longer adequate when handling several performance figures over multi-dimensional parameter spaces. The most common design scenarios involve local tuning since decent...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
Year 2022
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublicationNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublicationElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublicationAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
Year 2021
-
A Self-Adaptive Complex Root Tracing Algorithm for the Analysis of Propagation and Radiation Problem
PublicationAn improved complex root tracing algorithm for radiation and propagation issues is proposed. The approach is based on a self-adaptive discretization of Cauchy’s argument principle for a C × R space and requires a reduced number of function calls in comparison to other procedures presented in the literature. A few different examples concerning propagation and radiation problems have been considered to verify the validity and efficiency...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Frequency-Based Regularization for Improved Reliability Optimization of Antenna Structures
PublicationThe paper proposes a modified formulation of antenna parameter tuning problem. The main ingredient of the presented approach is a frequency-based regularization. It allows for smoothening the functional landscape of the assumed cost function, defined to encode the prescribed design specifications. The regularization is implemented as a special penalty term complementing the primary objective and enforcing the alignment of the antenna...
-
Robust Parameter Tuning of Antenna Structures by Means of Design Specification Adaptation
PublicationParameter tuning through numerical optimization has become instrumental in the design of high-performance antenna systems. Yet, practical optimization faces several major challenges, including high cost of massive evaluations of antenna characteristics, normally involving full-wave electromagnetic (EM) analysis, large numbers of adjustable variables, the shortage of reasonable initial solutions in the case of topologically complex...
-
Series-Slot-Fed Circularly Polarized Multiple-Input-Multiple-Output Antenna Array Enabling Circular Polarization Diversity for 5G 28-GHz Indoor Applications
PublicationIn this paper, a four-element circularly polarized series-slot-fed multiple-input-multiple-output (MIMO) antenna array with circular polarization diversity is presented. The proposed design utilizes a combination of 45-degree inclined slots and a straight microstrip line feeding technique. The two antennas are designed to operate with the opposite sense of circular polarization (CP). CP is achieved by placing a patch of just about...
Year 2020
-
A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design
PublicationA conformal circularly polarized series-fed microstrip array design for broadside radiation is presented. The array aperture under design is conformal to a cylindrical surface of a given radius. The approach we present primarily addresses focusing of the circularly polarized major lobe of the conformal array by proper dimensioning of the aperture spacings. The proposed analytical models yield the values of the element spacings...
-
Communication Model Order Reduction in Hybrid Methods Involving Generalized Impedance Matrix
PublicationA novel strategy for the efficient analysis of frequency-domain scattering electromagnetic problems in open and closed domains is presented. A fully automatic model-order reduction technique, called the enhanced reduced-basis method, is applied to increase the efficiency of the hybrid approach, which combines the finite-element and mode-matching methods. Numerical tests show that the proposed algorithm yields reliable and highly...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublicationIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
Year 2019
-
Novel Coplanar-Strip-Based Excitation Technique for Design of Broadband Circularly Polarization Antennas with Wide 3-dB Axial Ratio Beamwidth
PublicationIn this paper, a novel excitation technique for design of a single-point-fed compact low-profile wide-slot antennas with broadband circular polarization (CP) and wide 3 dB axial ratio (AR) beamwidth is presented. Two inverted L-shape parasitic strips placed coplanar to the microstrip line of an asymmetric CPW, and a horizontal strip that protrudes from the vertical edge of the backside ground plane of the substrate are used for...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublicationUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Rapid Re-Design and Bandwidth/Size Trade-Offs for Compact Wideband Circular Polarization Antennas Using Inverse Surrogates and Fast EM-Based Parameter Tuning
PublicationDesign of compact wideband circularly polarized (CP) antennas is challenging due to the necessity of simultaneous handling of several characteristics (reflection, axial ratio, gain) while maintaining a small size of the structure. Antenna re-design for various operating bands is clearly more difficult yet practically important because intentional reduction of the bandwidth (e.g., by moving the lower edge of the operating band up...
Year 2018
-
Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique
PublicationA hybrid technique was employed for the analysis of the resonance frequency of thin planar and cylindrical microstrip structures with the patches of arbitrary geometry. The proposed technique utilizes a combination of Galerkin’s moment method and a finite-element method (FEM). In this approach, an FEM is adopted to calculate the patch surface current densities, and a method of moments is utilized to calculate the resonance frequencies...
-
Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems
PublicationA flexible and effective algorithm for complex roots and poles finding is presented. A wide class of analytic functions can be analyzed, and any arbitrarily shaped search region can be considered. The method is very simple and intuitive. It is based on sampling a function at the nodes of a regular mesh, and on the analysis of the function phase. As a result, a set of candidate regions is created and then the roots/poles are verified...
-
On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays
PublicationTwo design approaches, illustrated by simulations and measurements, aiming at a systematic computer-aided design of printed circuit feeds for low-sidelobe microstrip antenna arrays are described. The novelty of these approaches resides in identification of the optimal feed architectures with subsequent simulation-based optimization of the feed and array aperture dimensions. In this work, we consider microstrip corporate feeds realizing...
-
Propagation in the Open Cylindrical Guide of Arbitrary Cross Section With the Use of Field Matching Method
PublicationA simple solution to propagation problem in open waveguides and dielectric fibers of arbitrary convex cross section is presented. The idea of the analysis is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. A complex root tracing algorithm is utilized to find the propagation coefficients of the investigated guides. Different convex...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
Year 2017
-
Analytical Expression for the Time-Domain Green's Function of a Discrete Plane Wave Propagating in the 3-D FDTD Grid
PublicationIn this paper, a closed-form expression for the time-domain dyadic Green’s function of a discrete plane wave (DPW) propagating in a 3-D finite-difference time-domain (FDTD) grid is derived. In order to verify our findings, the time-domain implementation of the DPW-injection technique is developed with the use of the derived expression for 3-D total-field/scattered-field (TFSF) FDTD simulations. This implementation requires computations...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Efficient Complex Root Tracing Algorithm for Propagation and Radiation Problems
PublicationAn efficient complex root tracing algorithm for propagation and radiation problems is presented. The proposed approach is based on a discretization of Cauchy’s Argument Principle and its generalization to the C × R space. Moreover, an engagement of the tracing process with a global root finding algorithm recently presented in the literature is performed. In order to confirm a validity and efficiency of the proposed technique, a...
Year 2016
-
An Off-Body Channel Model for Body Area Networks in Indoor Environments
PublicationThis paper presents an off-body channel model for body area networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in a realistic indoor office environment containing typical scatterers have been measured: five were static (three standing and two...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublicationAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
Scattering From a Cylindrical Object of Arbitrary Cross Section With the Use of Field Matching Method
PublicationA simple and intuitive solution to scattering problems in shielded and open structures is presented. The main idea of the analysis is based on the direct field matching technique involving the usage of projection of the fields at the boundary on a fixed set of orthogonal basis functions. Different convex shapes and various obstacle materials are considered to verify the validity of the method in open and closed structures. The...
Year 2015
-
An Analysis of Elliptical-Rectangular Multipatch Structure on Dielectric-Coated Confocal and Nonconfocal Elliptic Cylinders
PublicationA rigorous analysis of the resonance frequency problem of an elliptical-rectangular microstrip structure mounted on dielectric-coated elliptic conducting cylinder, with electrically small radius, is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. The complex resonance frequencies of...
Year 2014
-
An Analysis of Probe-Fed Rectangular Patch Antennas With Multilayer and Multipatch Configurations on Cylindrical Surfaces
PublicationA multi-patch configuration of probe-fed rectangular microstrip antennas mounted on a cylindrical body, with electrically small radius, with an arbitrary number of substrate and superstrate layers is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. A unified procedure for creating proper matrices for the investigated geometry of the structure is outlined here. Numerical results for...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublicationA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
Simulation-Driven Design of Microstrip Antenna Subarrays
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs...
Year 2013
-
Accuracy of the Discrete Green's Function Formulation of the FDTD Method
PublicationThis paper reports an evaluation of the accuracy of the discrete Greens function (DGF) formulation of the finite-difference time-domain (FDTD) method. Recently, the closed-form expression for the DGF and its efficient numerical implementation were presented, which facilitates applications of the DGF in FDTD simulations of radiation and scattering problems. So far, the accuracy of the DGF formulation of the FDTD method has been...
Year 2008
-
A new hybrid method for analysis of scattering from arbitrary configuration of cylindrical objects
PublicationArtykuł opisuje nową hybrydową metodę analizy rozpraszania fali elektromagnetycznej od obiektów cylindrycznych o dowolnym przekroju poprzecznym. W prezentowanym podejściu każdy obiekt jest traktowany jako efektywny cylinder o przekroju kołowym, opisany przez macierz impedancyjną. W celu uzyskania owej macierzy zastosowano połączenie metod różnic skończonych w dziedzinie częstotliwości (FDFD) i dopasowania rodzajów (MM). W celu...
-
Analysis and design of a polarizer rotator system
PublicationW artykule przedstawiono metodę analizy wielosekcyjnego polaryzatora złożonego z periodycznych szyków obiektów cylindrycznych. W celu analizy badanej struktury zastosowano metodę pełnofalową opartą na metodzie dopasowania rodzajów. Opracowany algorytm został zweryfikowany poprzez porównanie uzyskanych wyników z wynikami otrzymanymi z przybliżonego modelu transmisyjnego oraz z własnymi pomiarami wykonanego prototypu.
seen 1764 times