dr inż. Mohammad Malikan
Employment
- Assistant Professor at Katedra Wytrzymałości Materiałów
Research fields
- nanocomposites
- functionaly graded materials
- composite structures
- laminated composites
- mathematical modelling
- mechanics of materials
- continuum mechanics
- plates and shells
- elasticity
- nonlinear elasticity
- solid mechanics
- smart materials
- piezoelectricity
- flexoelectricity
- flexomagneticity
- piezomagneticity
- hyperelasticity
- thermoelasticity
- viscoelasticity
- mechanical vibrations
- kinematic simulation
- structural stability
- analytical solution
- analytical modelling
- semi-analytical modelling
- numerical solution
- differential quadrature method
- finite element method
- cad
- cae
- matlab
- mathematica
- adams
- abaqus
- solidworks
Publications
Filters
total: 83
Catalog Publications
Year 2024
-
Experimental and numerical studies on the mechanical response of a piezoelectric nanocomposite-based functionally graded materials
PublicationThis work presents an experimental study of piezoelectric structures reinforced by graphene platelets, based on the concept of the functionally graded materials (FGMs). The assumed model is a rectangular beam/plate and the composition is due to the Halpin-Tsai rule. The model is also simulated in the Abaqus software which is the first time that such a structure has been modelled in an FEM package. In addition, a mathematical model...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublicationThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
On mechanics of piezocomposite shell structures
PublicationThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
Year 2023
-
A Novel Approach to Fully Nonlinear Mathematical Modeling of Tectonic Plates
PublicationThe motion of the Earth's layers due to internal pressures is simulated in this research with an efficient mathematical model. The Earth, which revolves around its axis of rotation and is under internal pressure, will change the shape and displacement of the internal layers and tectonic plates. Applied mathematical models are based on a new approach to shell theory involving both two and three-dimensional approaches. It is the...
-
A Review of Hyperelastic Constitutive Models for Dielectric Elastomers
PublicationDielectric elastomers are smart materials that are essential components in soft systems and structures. The core element of a dielectric elastomer is soft matter, which is mainly rubber-like and elastomeric. These soft materials show a nonlinear behaviour and have a nonlinear strain-stress curve. The best candidates for modelling the nonlinear behaviour of such materials are hyperelastic strain energy functions. Hyperelastic functions...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Experimental and Numerical Study on Mechanical Characteristics of Aluminum/Glass Fiber Composite Laminates
PublicationThe fiber-metal composites made of aluminum sheets and glass fibers reinforced with a polyester resin as the matrix were studied. The composites were prepared by hand lay-up method. Some aspects of manufacturing affecting the composite behavior were considered. In particular, the influences of the arrangement of layers and their number on the mechanical and physical properties of composites with ten different compositions were...
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
On analysis of nanocomposite conical structures
PublicationThis research examines the analysis of rotating truncated conical baskets reinforced by carbon nanotubes around the two independent axes. A time-dependent analysis is considered, and the nonlinear dynamic governing equations are extracted using the energy method. Carbon nanotubes (CNTs) reinforced the conical basket, and the structure's mechanical properties are determined based on the several distributions of carbon nanotubes....
-
On dynamic modeling of piezomagnetic/flexomagnetic microstructures based on Lord–Shulman thermoelastic model
PublicationWe study a time-dependent thermoelastic coupling within free vibrations of piezomagnetic (PM) microbeams considering the flexomagnetic (FM) phenomenon. The flexomagneticity relates to a magnetic field with a gradient of strains. Here, we use the generalized thermoelasticity theory of Lord–Shulman to analyze the interaction between elastic deformation and thermal conductivity. The uniform magnetic field is permeated in line with...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublicationA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
Year 2022
-
A comprehensive study on nonlinear hygro-thermo-mechanical analysis of thick functionally graded porous rotating disk based on two quasi three-dimensional theories
PublicationIn this paper, a highly efficient quasi three-dimensional theory has been used to study the nonlinear hygro-thermo-mechanical bending analysis of very thick functionally graded material (FGM) rotating disk in hygro-thermal environment considering the porosity as a structural defect. Two applied quasi three-dimensional displacement fields are assumed in which the strain along the thickness is not zero unlike most of the other plate...
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublicationIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublicationThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Flexomagneticity in Functionally Graded Nanostructures
PublicationFunctionally graded structures have shown the perspective of materials in a higher efficient and consistent manner. This study reports a short investigation by concentrating on the flexomagnetic response of a functionally graded piezomagnetic nano-actuator, keeping in mind that the converse magnetic effect is only taken into evaluation. The rule of mixture assuming exponential composition of properties along with the thickness...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublicationThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Mechanics of Micro- and Nano-Size Materials and Structures
PublicationNanotechnology knowledge is always looking to expand its boundaries to achieve the mostsignificant benefit to human life and meet the growing needs of today. In this case, we can refer tomicro- and nanosensors in micro/nano-electromechanical systems (MEMS/NEMS). These electricaldevices can detect minimal physical stimuli up to one nanometer in size. Today, micro/nano-sensordevices are widely used in the...
-
Nonlocal Models of Plates and Shells with Applications in Micro- and Nanomechanics
PublicationNowadays, the use of small-scale structures in micro/nanomachines has become more and more widespread. The most important applications of such small-sized parts are in micro-electro-mechanical systems (MEMS) as well as nano-electro-mechanical systems (NEMS) as actuators, sensors, energy harvesters. For example, nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and...
-
Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads
PublicationRotating micromachined beams are one of the most practical devices with several applications from power generation to aerospace industries. Moreover, recent advances in micromachining technology have led to huge interests in fabricating miniature turbines, gyroscopes and microsensors thanks to their high quality/reliability performances. To this end, this article is organized to examine the axial dynamic reaction of a rotating...
-
On a flexomagnetic behavior of composite structures
PublicationThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
On the deformation and frequency analyses of SARS-CoV-2 at nanoscale
PublicationThe SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing...
-
The effect of shear deformations' rotary inertia on the vibrating response of multi-physic composite beam-like actuators
PublicationIn consecutive studies on flexomagneticity (FM), this work investigates the flexomagnetic reaction of a vibrating squared multi-physic beam in finite dimensions. It is assumed that the bending and shear deformations cause rotary inertia. In the standard type of the Timoshenko beam the rotary inertia originated from shear deformations has been typically omitted. It means the rotary inertia resulting from shear deformation is a new...
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublicationGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
Year 2021
-
Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation
PublicationPresent study is dealt with the applicability of shifted Chebyshev polynomial based Rayleigh-Ritz method and Navier’s technique on free vibration of Functionally Graded (FG) beam with uniformly distributed porosity along the thickness of the beam. The material properties such as Young’s modulus, mass density, and Poisson’s ratio are also considered to vary along the thickness of the FG beam as per the power-law exponent model....
-
Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach
PublicationIn this investigation, a computational analysis is conducted to study a magneto-thermoelastic problem for an isotropic perfectly conducting half-space medium. The medium is subjected to a periodic heat flow in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a new generalized model has been investigated to address the considered problem. The introduced model can be formulated by combining...
-
Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis
PublicationOur analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli ferromagnetic nanobeam accounting for a size-dependent model through assuming surface effects. In the framework of the flexomagnetic phenomenon, the large deflections are investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress coupled to the gradient of strain generates a scale-dependent Hookean stress-strain...
-
Experimental and Numerical Investigation of Tensile and Flexural Behavior of Nanoclay Wood-Plastic Composite
PublicationIn this study, the effect of wood powder and nanoclay particle content on composites’ mechanical behavior made with polyethylene matrix has been investigated. The wood flour as a reinforcer made of wood powder was at levels of 30, 40, and 50 wt.%, and additional reinforcement with nanoclay at 0, 1, 3, and 5 wt.%. Furthermore, to make a composite matrix, high-density polyethylene was used at levels of 70, 60, and 50% by weight....
-
Flexomagnetic response of buckled piezomagnetic composite nanoplates
PublicationIn this paper, the equation governing the buckling of a magnetic composite plate under the influence of an in-plane one-dimensional magnetic field, assuming the concept of flexomagnetic and considering the resulting flexural force and moment, is investigated for the first time by different analytical boundary conditions. To determine the equation governing the stability of the plate, the nonlocal strain gradient theory has been...
-
Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium
PublicationThe present investigation is focused on the buckling behavior of strain gradient nonlocal beam embedded in Winkler elastic foundation. The first-order strain gradient model has been combined with the Euler–Bernoulli beam theory to formulate the proposed model using Hamilton’s principle. Three numerically efficient methods, namely Haar wavelet method (HWM), higher order Haar wavelet method (HOHWM), and differential quadrature method...
-
Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties
PublicationIn this study, a non-probabilistic approach based Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM) in term of double parametric form has been proposed to investigate the buckling behavior of Euler-Bernoulli nonlocal beam under the framework of the Eringen's nonlocal elasticity theory, considering the structural parameters as imprecise or uncertain. The uncertainties in Young’s modulus and diameter of the beam are...
-
Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on Mechanical Properties of Wood Flour/Polyethylene Composites
PublicationIn the present research, wood flour reinforced polyethylene polymer composites with a coupling agent were prepared by injection molding. The effects of wood flour size, aspect ratios, and mold injection temperature on the composites’ mechanical properties were investigated. For the preparation of the polymer composites, five different formulations were created. The mechanical properties including tensile strength and the modulus,...
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublicationIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft
PublicationLarge deformations and stress analyses in two types of space structures that are intended for people to live in space have been studied in this research. The structure under analysis is assumed to rotate around the central axis to create artificial gravitational acceleration equal to the gravity on the Earth's surface. The analysis is fully dynamic, which is formulated based on the energy method by using the first-order shear deformation...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublicationIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment
PublicationThis work performs a novel quasi three-dimensional (3D) bending analysis for a moderately thick functionally graded material (FGM) made of nanoceramics and metal powders, in presence of porosities due to some incorrect manufacturing processes. Such porosities can appear within the plate in two forms, namely, even and uneven distributions. The modeled system assumes a polymer matrix where both shear and transverse factors coexist....
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublicationThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
On the generalized model of shell structures with functional cross-sections
PublicationIn the present study, a single general formulation has been presented for the analysis of various shell-shaped structures. The proposed model is comprehensive and a variety of theories can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with the presented equations. In other words, various types of shell structures, including cylindrical, conical, spherical, elliptical, hyperbolic, parabolic,...
-
On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions
PublicationBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
-
Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory
PublicationThis article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublicationIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
Year 2020
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Buckling analysis of a non-concentric double-walled carbon nanotube
PublicationOn the basis of a theoretical study, this research incorporates an eccentricity into a system of compressed double-walled carbon nanotubes (DWCNTs). In order to formulate the stability equations, a kinematic displacement with reference to the classical beam hypothesis is utilized. Furthermore, the influence of nanoscale size is taken into account with regard to the nonlocal approach of strain gradient and the van der Waals interaction...
-
Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams
PublicationWe investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore,...
-
Free Vibration of Flexomagnetic Nanostructured Tubes Based on Stress-driven Nonlocal Elasticity
PublicationA framework for the flexomagneticity influence is here considered extending the studies about this aspect on the small scale actuators. The developed model accommodates and composes linear Lagrangian strains, Euler-Bernoulli beam approach as well as an extended case of Hamilton’s principle. The nanostructured tube should subsume and incorporate size effect; however, for the sake of avoiding the staggering costs of experiments,...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublicationIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Implementation of Hermite-Ritz method and Navier’s Technique for Vibration of Functionally Graded Porous Nanobeam Embedded in Winkler-Pasternak Elastic Foundation Using bi-Helmholtz type of nonlocal elasticity
PublicationPresent study is devoted to investigating the vibration characteristics of Functionally Graded (FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublicationHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
On effective properties of beam-lattice structures made of flexoelectric materials
PublicationThe e-Workshop Advances in ELAstoDYNamics of architected materials and BIOmaterials International Research Project (IRP) Coss&Vita of the CNRS
-
On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures
PublicationWe focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during post-buckling. An effective flexomagnetic property is also taken into account. The modelled sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms result in a mathematical model based on the nonlocal strain gradient elasticity approach (NSGT). Due to possible large deformations within a post-buckling phenomenon,...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublicationAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
seen 21006 times