Abstract
The classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications. The chapter presents an experimental study of several methods for real motion and motion intent classification (rest/upper/lower limbs motion, and rest/left/right hand motion). First, our approach to EEG recordings segmentation and feature extraction is presented. Then, 5 classifiers (Naïve Bayes, Decision Trees, Random Forest, Nearest-Neighbors NNge, Rough Set classifier) are trained and tested using examples from an open database. Feature subsets are selected for consecutive classification experiments, reducing the number of required EEG electrodes. Methods comparison and obtained results are presented, and a study of features feeding the classifiers is provided. Differences among participating subjects and accuracies for real and imaginary motion are discussed. It is shown that though classification accuracy varies from person to person, it could exceed 80% for some classifiers.
Citations
-
6
CrossRef
-
0
Web of Science
-
1 2
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- Copyright (Springer International Publishing AG 2018)
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Title of issue:
- Advances in Feature Selection for Data and Pattern Recognition strony 227 - 239
- Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Szczuko P., Lech M., Czyżewski A.: Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion// Advances in Feature Selection for Data and Pattern Recognition/ ed. Stańczyk U., Zielosko B., Jain L. : Springer, 2018, s.227-239
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-319-67588-6_12
- Verified by:
- Gdańsk University of Technology
seen 198 times