Effect of Hydroxypropylation and Beta-Amylase Treatment on Complexation of Debranched Starch With Naringenin - Publication - Bridge of Knowledge

Search

Effect of Hydroxypropylation and Beta-Amylase Treatment on Complexation of Debranched Starch With Naringenin

Abstract

Naringenin exhibits many health benefits but it has limited water solubility and consequently low bioavailability. The objective of this study is to investigate the effect of hydroxypropylation and enzymatic treatments on starch complexation with naringenin. Potato starch and Hylon VII are hydroxypropylated to two substitution degrees and then debranched or debranched/β‐amylase treated prior to complexing with naringenin. Both soluble and insoluble complexes are recovered and characterized. An increase in hydroxypropylation level improves recovery of soluble complexes, while total recovery remains unchanged; the β‐amylase treatment further increases soluble complex recovery. For the same treatment, the naringenin content is greater in Hylon VII complexes (6.72–15.15 mg/g) than in potato starch complexes (2.45–11.18 mg/g). Insoluble complexes have greater naringenin contents (3.91–15.15 mg/g) compared to their soluble counterparts (2.45–9.43 mg/g). All complexes exhibit a mixture of B + V X‐ray diffraction pattern. This work is the first one to demonstrate that hydroxypropylated starch forms complexes with naringenin, and an appropriate level of beta‐amylase hydrolysis further improves their complexation.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 32 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
STARCH-STARKE no. 70, edition 5-6, pages 1 - 10,
ISSN: 0038-9056
Language:
English
Publication year:
2018
Bibliographic description:
Gonzalez A., Wang Y., Staroszczyk H., Brownmiller C., Lee S.: Effect of Hydroxypropylation and Beta-Amylase Treatment on Complexation of Debranched Starch With Naringenin// STARCH-STARKE. -Vol. 70, iss. 5-6 (2018), s.1-10
DOI:
Digital Object Identifier (open in new tab) 10.1002/star.201700263
Bibliography: test
  1. Rutschmann, M., Solms, J., Formation of inclusion complexes of starch with different organic compounds.4. Ligand binding and variability in helical conformations of V- amylose. Lebensm.Wiss. Technol. 1990, 23, 70-79.
  2. Tufvesson, F., Wahlgren, M., Eliasson, A., Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch/Stärke 2003, 55, 61-71. open in new tab
  3. Tufvesson, F., Wahlgren, M., Eliasson, A., Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch/Stärke 2003, 55, 138-149. open in new tab
  4. Tang, M.C., Copeland, L., Analysis of complexes between lipids and wheat starch. Carbohydr. Polym. 2007, 67, 80-85. open in new tab
  5. Lesmes, U., Cohen, S.H., Shener, Y., Shimoni, E., Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocoll. 2009, 23, 667-675. open in new tab
  6. Rutschmann, M., Heiniger, J., Pliska, V., Solms, J., Formation of inclusion complexes of starch with different organic compounds. 1. Method of evaluation of binding profiles with menthone as an example. Lebensm. Wiss. Technol. 1989, 22, 240-244.
  7. Godet, M., Buléon, A., Tran, V., Colonna, P., Structural features of fatty acid-amylose complexes. Carbohydr. Polym. 1993, 21, 91-95. open in new tab
  8. Godet, M., Bizot, H., Buléon, A., Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydr. Polym. 1995, 27, 47-52. open in new tab
  9. Arijaje, E., Wang, Y.-J., Shin, S., Sha, U., Proctor, A., Effects of chemical and enzymatic modifications on starch-stearic acid complex formation. J. Agric. Food Chem. 2014, 62, 2963-2972. open in new tab
  10. Arijaje, E., Wang, Y.-J., Effects of chemical and enzymatic modifications on starch-oleic acid complex formation. J. Agric. Food Chem. 2015, 63, 4202-4210. open in new tab
  11. Arijaje, E., Wang, Y.-J., Effects of chemical and enzymatic modifications on starch- linoleic acid complex formation. Food Chem. 2017, 217, 9-17. open in new tab
  12. Wulff, G., Kubik, S., Helical amylose complexes with organic complexands .1. microcalorimetric and circular dichroitic investigations. Macromol. Chem. Phys. 1992, 193, 1071-1080. open in new tab
  13. Liu, J., Wang, M., Peng, S., Zhang, G., Effect of green tea catechins on the postprandial glycemic response to starches differing in amylose content. J. Agric. Food Chem. 2011, 59, 4582-4588. open in new tab
  14. Chai, Y., Wang, M., Zhang, G., Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J. Agric. Food Chem. 2013, 61, 8608-8615. open in new tab
  15. Zhang, L., Yang, X., Li, S., Gao, W., Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin. LWT-Food Sci. Technol. 2011, 44, 787-792. open in new tab
  16. Lorentz, C., Pencreac'h, G., Soultani-Vigneron, S., Rondeau-Mouro, C., de Carvalho, M., Pontoire, B., Le Bail, P., Coupling lipophilization and amylose complexation to encapsulate chlorogenic acid. Carbohydr. Polym. 2012, 90, 152-158. open in new tab
  17. Cohen, R., Orlova, Y., Kovalev, M., Ungar, Y., Shimoni, E., Structural and functional properties of amylose complexes with genistein. J. Agric. Food Chem. 2008, 56, 4212- 4218. open in new tab
  18. Van Hung, P., Phat, N. H., Phi, N. T. L., Physicochemical properties and antioxidant capacity of debranched starch-ferulic acid complexes. Starch/Stärke, 2013, 65, 382-389. open in new tab
  19. Kim, J., Huber, K., Preparation and characterization of corn starch-βcarotene composites. Carbohydr. Polym. 2016, 136, 394-401. open in new tab
  20. Di Majo, D. D., Giammanco, M., La Guardia, M., Tripoli, E., Giammanco, S., Finotti, E., Flavanones in citrus fruit: Structure-antioxidant activity relationship. Food Res. Int. 2005, 38, 1161-1166. open in new tab
  21. Gao, K., Henning, S. M., Niu, Y., Youssefian, A. A., Seeram, N. P., Xu, A., Herber, D., The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 89-95. open in new tab
  22. Jayachitra, J., Nalini, N., Effect of naringenin (citrus flavanone) on lipid profile in ethanol- induced toxicity in rats. J. Food Biochem. 2012, 36, 502-511. open in new tab
  23. Lee, K., Moon, S., Kim, K., Mendonca, A., Paik, H., Antimicrobial effects of various flavonoids on Escherichia coli O157:H7 cell growth and lipopolysaccharide production. Food Sci. Biotechnol. 2010, 19, 257-261. open in new tab
  24. Yang, L., Ma, S., Zhou, S., Chen, W., Yuan, M., Yin, Y., Yang, X., Preparation and characterization of inclusion complexes of naringenin with β-cyclodextrin or its derivative. Carbohydr. Polym. 2013, 98, 861-890. open in new tab
  25. Pal, J., Singhal, R., Kulkarni, P., Physicochemical properties of hydroxypropyl derivative from corn and amaranth starch. Carbohydr. Polym. 2012, 134, 926-932. open in new tab
  26. Gonzalez, A., Wang, Y.-J., Staroszczyk, H., Brownmiller, C., Lee, S.-O., Acetylation and enzymatic treatment on starch complexation with naringenin. Submitted. open in new tab
  27. Wang, Y.-J., Wang, L., Effect of modification sequence on structures and properties of hydroxypropylated and crosslinked waxy maize starch. Starch/Stärke 2000, 52, 406-412. open in new tab
  28. Johnson, D.P., Spectrophotometric determination of the hydroxypropyl group in starch ethers. Anal. Chem. 1969, 41, 859-860. open in new tab
  29. Wurzburg, O. B., Crosslinked Starches. In O. B. Wurzburg (Ed.), Modified starches: Properties and uses. CRC Press Inc., Boca Raton, FL, 1986, pp. 41-53.
  30. Kavitha, R., BeMiller, J. N., Characterization of hydroxypropylated potato starch. Carbohydr. Polym. 1998, 37, 115-121. open in new tab
  31. Liu, H., Li, M., Chen, P., Yu, L., Chen, L., Tong, Z., Morphologies and thermal properties of hydroxypropylated high-amylose corn starch. Cereal Chem. 2010, 87, 144-148. open in new tab
  32. Perera, C., Hoover, R., Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chem. 1999, 64, 361-375. open in new tab
  33. Wulff, G., Steinert, A., Höler, O., Modification of amylose and investigation of its inclusion behavior. Carbohydr. Res. 1998, 307, 19-31. open in new tab
  34. Zhu, F., Wang, Y.-J., Characterization of modified high-amylose maize starch-α-naphthol complexes and their influences on rheological properties of wheat starch. Food Chem. 2013, 138, 256-262. open in new tab
  35. Arijaje, E., Wang, Y.-J., Effects of enzymatic modification and botanical source on starch- stearic acid complex formation. Starch/Stärke 2016, 68, 700-708. open in new tab
  36. Zhang, B., Huang, Q., Luo, F., Fu, X., Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll. 2012, 28, 174-181. open in new tab
  37. Forrest, B., Identification and quantitation of hydroxypropylation of starch by FTIR. Starch/Stärke 1992, 5, 179-183. open in new tab
  38. Unsalan, O., Erdogdu, Y., Gulluoglu, M., FT-Raman and FT-IR spectral and quantum chemical studies on some flavonoid derivatives: Baicalein and naringenin. J. Raman Spectrosc. 2009, 40, 562-570. open in new tab
  39. Liu, H., Ramsden, L., Corke, H., Physical properties and enzymatic digestibility of hydroxypropylated ae, wx, and normal maize starch. Carbohydr. Polym. 1999, 40, 175- 182. open in new tab
  40. Richardson, S., Nilsson, G., Bergquist, K., Gorton, L., Mischnick, P., Characterization of the substituent distribution in hydroxypropylated potato amylopectin starch. Carbohydr. Res. 2000, 328, 365-373. open in new tab
Verified by:
Gdańsk University of Technology

seen 64 times

Recommended for you

Meta Tags