Enhancing electrical properties through in-situ controlled nanocrystallization of V2O5–TeO2 glass - Publication - Bridge of Knowledge

Search

Enhancing electrical properties through in-situ controlled nanocrystallization of V2O5–TeO2 glass

Abstract

V2O5–TeO2 glass–ceramics (VTGC) were prepared by controlled annealing of the V2O5–TeO2 glass (VTG), which illustrates a parent glass matrix with a single charge carrier. The annealing proceeded at six temperatures selected between the glass transition and the maximum of the frst crystallization process to obtain various nanocrystallite sizes. Heat treatment caused an increase in DC conductivity by 2.5–3.5 (250–285 °C) order of magnitude. Using thermal analysis, the crystal growth process was determined to be 1D. Structural studies show that the obtained materials are partially amorphous and polycrystalline with nanometersized crystallites. Subtle thread-like structures were observed using conductive AFM. The activation energy of the conduction process decreased from 0.38 eV in VTG to 0.18–0.11 eV (250–285 °C) in VTGC. The radii of crystallites were calculated based on the theoretical model of electron hopping between connected semiconducting nanocrystallites and vary between 1.7 and 2.8 nm (250–285 °C). Thermoelectric studies indicate constant carrier concentration. Features characteristic of small polaron hopping-governed materials were observed. We suggest V3O7 nanocrystals as conductive media in VTGC.

Citations

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MATERIALS SCIENCE no. 59, pages 12600 - 12612,
ISSN: 0022-2461
Language:
English
Publication year:
2024
Bibliographic description:
Okoczuk P., Kwiatkowska A., Murawski L., Pietrzak T., Wójcik N., Garmroudi F., Wicikowski L., Kościelska B.: Enhancing electrical properties through in-situ controlled nanocrystallization of V2O5–TeO2 glass// JOURNAL OF MATERIALS SCIENCE -,iss. 59 (2024), s.12600-12612
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10853-024-09957-y
Sources of funding:
  • COST_FREE Program publikowania otwartego w ramach licencji krajowej. Publikowanie open access w "Springer".
Verified by:
Gdańsk University of Technology

seen 0 times

Recommended for you

Meta Tags