Fully scalable one-pot method for the production of phosphonic graphene derivatives - Publication - Bridge of Knowledge

Search

Fully scalable one-pot method for the production of phosphonic graphene derivatives

Abstract

Graphene oxide was functionalized with simultaneous reduction to produce phosphonated reduced graphene oxide in a novel, fully scalable, one-pot method. The phosphonic derivative of graphene was obtained through the reaction of graphene oxide with phosphorus trichloride in water. The newly synthesized reduced graphene oxide derivative was fully characterized by using spectroscopic methods along with thermal analysis. The morphology of the samples was examined by electron microscopy. The electrical studies revealed that the functionalized graphene derivative behaves in a way similar to chemically or thermally reduced graphene oxide, with an activation energy of 0.014 eV.

Citations

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Beilstein Journal of Nanotechnology no. 8, pages 1094 - 1103,
ISSN: 2190-4286
Language:
English
Publication year:
2017
Bibliographic description:
Żelechowska K., Prześniak-Welenc M., Łapiński M., Kondratowicz I., Miruszewski T.: Fully scalable one-pot method for the production of phosphonic graphene derivatives// Beilstein Journal of Nanotechnology. -Vol. 8, (2017), s.1094-1103
DOI:
Digital Object Identifier (open in new tab) 10.3762/bjnano.8.111
Bibliography: test
  1. Dreyer, D. R.; Park, D.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228-240. doi:10.1039/B917103G open in new tab
  2. Eigler, S.; Hirsch, A. Angew. Chem., Int. Ed. 2014, 53, 7720-7738. doi:10.1002/anie.201402780 open in new tab
  3. Gao, W., Ed. Graphene Oxide; open in new tab
  4. Springer International Publishing, 2015. doi:10.1007/978-3-319-15500-5 open in new tab
  5. Kim, M.-J.; Jeon, I.-Y.; Seo, J.-M.; Dai, L.; Baek, J.-B. ACS Nano 2014, 8, 2820-2825. doi:10.1021/nn4066395 open in new tab
  6. Bai, H.; Li, Y.; Zhang, H.; Chen, H.; Wu, W.; Wang, J.; Liu, J. J. Membr. Sci. 2015, 495, 48-60. doi:10.1016/j.memsci.2015.08.012 open in new tab
  7. Liu, J.; Li, X.; Wang, X.; Chen, C.; Wang, X. J. Nucl. Mater. 2015, 466, 56-64. doi:10.1016/j.jnucmat.2015.07.027 open in new tab
  8. Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Tetrahedron 2015, 71, 7481-7529. doi:10.1016/j.tet.2015.04.117 open in new tab
  9. Kieczykowski, G. R.; Jobson, R. B.; Melillo, D. G.; Reinhold, D. F.; Grenda, V. J.; Shinkai, I. J. Org. Chem. 1995, 60, 8310-8312. doi:10.1021/jo00130a036 open in new tab
  10. Romanenko, V. D.; Kukhar, V. P. ARKIVOC 2012, No. iv, 127-166. 10. Kannan, R.; Bipinlal, U.; Kurungota, S.; Pillai, V. K. open in new tab
  11. Phys. Chem. Chem. Phys. 2011, 13, 10312-10317. doi:10.1039/c0cp02853c open in new tab
  12. Hu, W.; Yu, B.; Jiang, S.-D.; Song, L.; Hu, Y.; Wang, B. J. Hazard. Mater. 2015, 300, 58-66. doi:10.1016/j.jhazmat.2015.06.040 open in new tab
  13. Dehghani, F.; Sardarian, A. R.; Doroodmand, M. M. J. Iran. Chem. Soc. 2014, 11, 673-684. doi:10.1007/s13738-013-0339-9 open in new tab
  14. Zhao, B.; Hu, H.; Mandal, S. K.; Haddon, R. C. Chem. Mater. 2005, 17, 3235-3241. doi:10.1021/cm0500399 open in new tab
  15. Adolph, M. A.; Xavier, Y. M.; Kriveshini, P.; Rui, K. J. Environ. Sci. 2012, 24, 1133-1141. doi:10.1016/S1001-0742(11)60880-2 open in new tab
  16. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 8, 4806-4814. doi:10.1021/nn1006368 open in new tab
  17. Żelechowska, K.; Kondratowicz, I.; Gazda, M. Pol. J. Chem. Technol. 2016, 18 (4), 47-55. doi:10.1515/pjct-2016-0070 open in new tab
  18. Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S. AIP Adv. 2012, 2, 032146. doi:10.1063/1.4747817 open in new tab
  19. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A., Jr.; Ruoff, R. S. Carbon 2009, 47, 145-152. doi:10.1016/j.carbon.2008.09.045 open in new tab
  20. Kaniyoor, A.; Ramaprabhu, S. AIP Adv. 2012, 2, 032183. doi:10.1063/1.4756995 open in new tab
  21. King, A. A. K.; Davies, B. R.; Noorbehesht, N.; Newman, P.; Church, T. L.; Harris, A. T.; Razal, J. M.; Minett, A. I. Sci. Rep. 2016, 6, 19491. doi:10.1038/srep19491 open in new tab
  22. Mohan, V. B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Mater. Sci. Eng., B 2015, 193, 49-60. doi:10.1016/j.mseb.2014.11.002 open in new tab
  23. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1, No. 73. doi:10.1038/ncomms1067 open in new tab
  24. Iqbal, M. Z.; Abdala, A. A. RSC Adv. 2013, 3, 24455-24464. doi:10.1039/c3ra43914c open in new tab
  25. Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gullapalli, H.; Borca-Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Small 2010, 6, 2535-2538. doi:10.1002/smll.201001384 open in new tab
  26. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H. K.; Chhowalla, M. J. Phys. Chem. C 2009, 113, 15768-15771. doi:10.1021/jp9051402 open in new tab
  27. Zhou, S. Y.; Gweon, G.-H.; Federov, A. V.; First, P. N.; de Heer, W. A.; Lee, D.-H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Nat. Mater. 2007, 6, 770-775. doi:10.1038/nmat2003 open in new tab
  28. Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S.; Sljivancanin, Z.; Besenbacher, F.; Hammer, B.; Pedersen, T. G.; Hofmann, P.; Hornekaer, L. Nat. Mater. 2010, 9, 315-319. doi:10.1038/nmat2710 open in new tab
  29. Zhou, J.; Wu, M. M.; Zhou, X.; Sun, Q. Appl. Phys. Lett. 2009, 95, 103108. doi:10.1063/1.3225154 open in new tab
  30. Crist, B. V. Handbook of Monochromatic XPS Spectra; Wiley: Chichester, UK, 2000.
Verified by:
Gdańsk University of Technology

seen 154 times

Recommended for you

Meta Tags