Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell - Publication - Bridge of Knowledge

Search

Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell

Abstract

Highly crystalline NiOX usually requires high annealing temperature (>300 °C) which is incompatible with flexible substrate and might consume high amount of energy. Herein, we demonstrate a facile emulsion process to synthesize highly crystalline, low temperature deposition (<150 °C) and solution processable NiOx nanoparticles (NPs) as a hole transport layer for the perovskite solar cells (PVSCs). A novel surfactant of tetramethylammonium hydroxide (TMAOH) was used to react with Ni(NO3)2 to form Ni(OH)2 nanoparticles (NPs). The micelles of TMAOH act as a nano-reactor containing OH anion. The Ni+ cation enters into the nano-reactor to form Ni(OH)2 NPs inside the reactor with controlled particle size. The Ni(OH)2 NPs prepared by emulsion process are further calcined to form NiOX NPs with the particle size of 8.28 ± 2.64 nm (EP-NiOX). The smaller size of EP-NiOX NPs results in a good dispersibility and an excellent stability of NPs suspension, which can be used to fabricate uniform NiOX film without any aggregates. A power conversion efficiency (PCE) of 18.85% can be achieved using this EP-NiOX film, as compared with 16.68% using the NiOX NPs synthesized from the chemical precipitation method (CPM-NiOX). Moreover, a flexible PVSCs with a PCE of 14.28% can be fabricated using the EP-NiOX film. Except for the device performance, the quality of the EP-NiOX film shows a good batch-to-batch uniformity, resulting in an excellent reproducibility of PVSCs. This work has a potential for the development of a large-scale production of PVSCs with a high energy conservation.

Citations

Authors (11)

Cite as

Full text

download paper
downloaded 190 times
Publication version
Accepted or Published Version
License
Copyright

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
CHEMICAL ENGINEERING JOURNAL no. 412, edition 15 May 2021,
ISSN: 1385-8947
Publication year:
2021
DOI:
Digital Object Identifier (open in new tab) https://doi.org/10.1016/j.cej.2021.128746
Bibliography: test
  1. M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells, Joule 3 (9) (2019) 2179-2192, https://doi.org/10.1016/j.joule.2019.06.014. open in new tab
  2. Q.i. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (7) (2019) 460-466, https://doi.org/10.1038/s41566-019-0398-2. open in new tab
  3. M. Saliba, J.-P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, A. Abate, How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures, Chem. Mater. 30 (2018) 4193-4201. open in new tab
  4. X. Zheng, Y.i. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A.K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A.Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. open in new tab
  5. D. Anthopoulos, Y.u. Han, Z.-H. Lu, O.F. Mohammed, F. Gao, E.H. Sargent, O.
  6. M. Bakr, Managing grains and interfaces via ligand anchoring enables 22.3%- efficiency inverted perovskite solar cells, Nat Energy 5 (2) (2020) 131-140, https://doi.org/10.1038/s41560-019-0538-4. open in new tab
  7. C. Chen, C. Wu, X. Ding, Y. Tian, M. Zheng, M. Cheng, H. Xu, Z. Jin, L. Ding, Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells, Nano Energy 71 (2020), 104604. open in new tab
  8. M. Cheng, C. Zuo, Y. Wu, Z. Li, B. Xu, Y. Hua, L. Ding, Charge-transport layer engineering in perovskite solar cells, Science Bulletin 65 (2020) 1237-1241. open in new tab
  9. X. Ding, C. Chen, L. Tao, C. Wu, M. Zheng, H. Lu, H. Xu, H. Li, M. Cheng, Dopant- free methoxy substituted copper(II) phthalocyanine for highly efficient and stable perovskite solar cells, Chem. Eng. J. 387 (2020), 124130. open in new tab
  10. G. Sathiyan, A.A. Syed, C. Chen, C. Wu, L. Tao, X. Ding, Y. Miao, G. Li, M. Cheng, L. Ding, Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells, Nano Energy 72 (2020), 104673. open in new tab
  11. H. Elbohy, B. Bahrami, S. Mabrouk, K. M. Reza, A. Gurung, R. Pathak, M. Liang, Q. Qiao, K. Zhu Tuning hole transport layer using urea for high-performance perovskite solar cells, Adv. Funct. Mater. 29 (2018) 1806740. open in new tab
  12. K. Jiang, F. Wu, G. Zhang, P.C.Y. Chow, C. Ma, S. Li, K.S. Wong, L. Zhu, H. Yan, Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss, J. Mater. Chem. A. 7 (2019) 21662-21667. open in new tab
  13. S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao, F. De Angelis, J. Huang, Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts, Science 365 (2019) 473. open in new tab
  14. H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt, L. Sun, One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer, J. Mater. Chem. A. 6 (2018) 21435- 21444. open in new tab
  15. C. Zuo, L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells, Small 11 (2015) 5528-5532. open in new tab
  16. P.-H. Lee, B.-T. Li, C.-F. Lee, Z.-H. Huang, Y.-C. Huang, W.-F. Su, High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process, Sol. Energy Mater Sol. Cells. 208 (2020), 110352. open in new tab
  17. X. Yin, J. Zhai, P. Du, N. Li, L. Song, J. Xiong, F. Ko, 3 D NiO Nanowall Hole- Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells, ChemSusChem 13 (5) (2020) 1006-1012, https://doi.org/10.1002/ cssc.201903025. open in new tab
  18. J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, Y. J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells, Adv. Mater. 26 (2014) 4107-4113. open in new tab
  19. Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S.F. Liu, Y. Hao, High- performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%, Adv. Energy Mater. 8 (2018) 1703432. open in new tab
  20. X. Yin, Y. Guo, H. Xie, W. Que, L.B. Kong, Nickel oxide as efficient hole transport materials for perovskite solar cells, Solar RRL. 3 (2019) 1900001. open in new tab
  21. X. Zheng, Z. Song, Z. Chen, S. S. Bista, P. Gui, N. Shrestha, C. Chen, C. Li, X. Yin, R. A. Awni, H. Lei, C. Tao, R. J. Ellingson, Y. Yan, G. Fang, Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells, J. Mater. Chem. C. 8 (2020) 1972-1980. open in new tab
  22. J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang, M. Wang, CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide, ACS Appl. Mater. Interfaces. 6 (2014) 22862-22870. open in new tab
  23. G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.S. Kwok, Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells, Adv. Sci. 4 (2017) 1700463. open in new tab
  24. S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N. G. Park, J. Y. Kim, H. Shin, An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells, Nanoscale 8 (2016) 11403-11412. open in new tab
  25. X. Yin, M. Que, Y. Xing, W. Que, High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer, J. Mater. Chem. A. 3 (2015) 24495-24503. open in new tab
  26. L.J. Tang, X. Chen, T.Y. Wen, S. Yang, J.J. Zhao, H.W. Qiao, Y. Hou, H.G. Yang, A Solution-Processed Transparent NiO Hole-Extraction Layer for High-Performance Inverted Perovskite Solar Cells, Chem. Eur. J. 24 (12) (2018) 2845-2849, https:// doi.org/10.1002/chem.201705658. open in new tab
  27. X. Liang, Q. Yi, S. Bai, X. Dai, X. Wang, Z. Ye, F. Gao, F. Zhang, B. Sun, Y. Jin, Synthesis of Unstable Colloidal Inorganic Nanocrystals through the Introduction of a Protecting Ligand, Nano Lett. 14 (6) (2014) 3117-3123, https://doi.org/ 10.1021/nl501763z. open in new tab
  28. Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng, H. Zhou, Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells, J. Mater. Chem. A 5 (14) (2017) 6597-6605, https://doi.org/10.1039/ C7TA01593C. open in new tab
  29. X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts, ACS Nano. 10 (2016) 3630-3636. open in new tab
  30. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen, W. C. Choy, Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility, ACS Nano. 10 (2016) 1503-1511. open in new tab
  31. L. Bronstein, M. Antonietti, P. Valetsky, in: Nanoparticles and Nanostructured Films, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1998, pp. 145-171, https:// doi.org/10.1002/9783527612079.ch07. open in new tab
  32. M.-H. Jao, C.-C. Cheng, C.-F. Lu, K.-C. Hsiao, W.-F. Su, Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy, J. Mater. Chem. C. 6 (2018) 9941-9949. open in new tab
  33. F. Matter, A.L. Luna, M. Niederberger, From colloidal dispersions to aerogels: How to master nanoparticle gelation, Nano Today 30 (2020), 100827. open in new tab
  34. Y.-C. Huang, F.-H. Hsu, H.-C. Cha, C.-M. Chuang, C.-S. Tsao, C.-Y. Chen, High- performance ITO-free spray-processed polymer solar cells with incorporating ink- jet printed grid, Organic Electronics 14 (11) (2013) 2809-2817, https://doi.org/ 10.1016/j.orgel.2013.08.001. open in new tab
  35. D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, Y. Galagan, Role of surface recombination in perovskite solar cells at the interface of HTL/CH 3 NH 3 PbI 3 , Nano Energy. 67 (2020), 104186. open in new tab
Verified by:
No verification

seen 368 times

Recommended for you

Meta Tags