Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics - Publication - Bridge of Knowledge

Search

Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics

Abstract

This paper presents results of a ground penetrating radar (GPR) survey conducted in St. Joseph’s Church in Gdańsk, Poland. The aim of the study was to produce tomographic imaging of a renovated floor as well as the objects buried under the floor to detect linear and volume inclusions. The assumed track spacing was meaningfully greater than the single signal spacing in each track, which induced the need for interpolation methods to estimate signal values in the areas beyond the trace lines. Various interpolation techniques were used to prepare the tomography maps. GPR time slices allowed the identification of reinforcing meshes, underfloor heating system elements and the foundations of entrances to crypts. The results obtained were compared to the exact images acquired in a dense regular grid to evaluate the efficiency of the applied interpolation methods and to verify the possibility of conducting GPR surveys with coarse track spacing.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 54 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MEASUREMENT no. 154, pages 1 - 12,
ISSN: 0263-2241
Language:
English
Publication year:
2020
Bibliographic description:
Rucka M., Wojtczak E., Zielińska M.: Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics// MEASUREMENT -Vol. 154, (2020), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.measurement.2020.107494
Bibliography: test
  1. C. Brooke, Thermal Imaging for the Archaeological Investigation of Historic Buildings, Remote Sens. 10 (2018) 1401, https://doi.org/10.3390/rs10091401. open in new tab
  2. E. Alexakis, E.T. Delegou, K.C. Lampropoulos, M. Apostolopoulou, I. Ntoutsi, A. Moropoulou, NDT as a monitoring tool of the works progress and the assessment of materials and rehabilitation interventions at the Holy Aedicule of the Holy Sepulchre, Constr. Build. Mater. 189 (2018) 512-526, https://doi.org/10.1016/j.conbuildmat.2018.09.007. open in new tab
  3. M.I. Martínez-Garrido, R. Fort, M. Gómez-Heras, J. Valles-Iriso, M.J. Varas- Muriel, A comprehensive study for moisture control in cultural heritage using non-destructive techniques, J. Appl. Geophys. 155 (2018) 36-52, https://doi. org/10.1016/j.jappgeo.2018.03.008. open in new tab
  4. L. Courard, A. Gillard, A. Darimont, J.M. Bleus, P. Paquet, Pathologies of concrete in Saint-Vincent Neo-Byzantine Church and Pauchot reinforced artificial stone, Constr. Build. Mater. 34 (2012) 201-210, https://doi.org/10.1016/ j.conbuildmat.2012.02.070. open in new tab
  5. P. Lopez-Arce, M. Tagnit-Hammou, B. Menendez, J.D. Mertz, M. Guiavarc'h, A. Kaci, S. Aggoun, A. Cousture, Physico-chemical stone-mortar compatibility of commercial stone-repair mortars of historic buildings from Paris, Constr. Build. Mater. 124 (2016) 424-441, https://doi.org/10.1016/j.conbuildmat.2016.07.076. open in new tab
  6. B. Jonaitis, V. Antonovič, A. Šneideris, R. Boris, R. Zavalis, Analysis of Physical and Mechanical Properties of the Mortar in the Historic Retaining Wall of the Gediminas Castle Hill (Vilnius, Lithuania), Materials (Basel). 12 (2018) 8, https://doi.org/10.3390/ma12010008. open in new tab
  7. Y. Boffill, H. Blanco, I. Lombillo, L. Villegas, Assessment of historic brickwork under compression and comparison with available equations, Constr. Build. Mater. 207 (2019) 258-272, https://doi.org/10.1016/j.conbuildmat.2019.02.083. open in new tab
  8. D.M. McCann, M.C. Forde, Review of NDT methods in the assessment of concrete and masonry structures, NDT E Int. 34 (2001) 71-84, https://doi.org/ 10.1016/S0963-8695(00)00032-3. open in new tab
  9. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, The Institiute of Electrical and Electronics Engineers Inc, New York, 1988. open in new tab
  10. L. Binda, A. Saisi, C. Tiraboschi, S. Valle, C. Colla, M. Forde, Application of sonic and radar tests on the piers and walls of the Cathedral of Noto, Constr. Build. Mater. 17 (2003) 613-627, https://doi.org/10.1016/S0950-0618(03)00056-4. open in new tab
  11. V. Pérez-Gracia, J.O. Caselles, J. Clapés, G. Martinez, R. Osorio, Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures, NDT E Int. 59 (2013) 40-47, https://doi.org/10.1016/j. ndteint.2013.04.014. open in new tab
  12. E. Zendri, L. Falchi, F.C. Izzo, Z.M. Morabito, G. Driussi, A review of common NDTs in the monitoring and preservation of historical architectural surfaces, Int. J. Archit. Herit. 11 (2017) 987-1004, https://doi.org/10.1080/ 15583058.2017.1331477. open in new tab
  13. M. Zieliń ska, M. Rucka, Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography, Materials (Basel). 11 (2018) 2543, https://doi.org/ 10.3390/ma11122543. open in new tab
  14. T. Shiotani, S. Momoki, H. Chai, D.G. Aggelis, Elastic wave validation of large concrete structures repaired by means of cement grouting, Constr. Build. Mater. 23 (2009) 2647-2652, https://doi.org/10.1016/j.conbuildmat.2009.01.005. open in new tab
  15. H.K. Chai, K.F. Liu, A. Behnia, K. Yoshikazu, T. Shiotani, Development of a tomography technique for assessment of the material condition of concrete using optimized elastic wave parameters, Materials (Basel). 9 (2016) 291, https://doi.org/10.3390/ma9040291. open in new tab
  16. V.G. Haach, F.C. Ramirez, Qualitative assessment of concrete by ultrasound tomography, Constr. Build. Mater. 119 (2016) 61-70, https://doi.org/10.1016/ j.conbuildmat.2016.05.056. open in new tab
  17. Ł. Drobiec, R. Jasiń ski, W. Mazur, Accuracy of eddy-current and radar methods used in reinforcement detection, Materials (Basel) 12 (2019) 1168, https://doi. org/10.3390/ma12071168. open in new tab
  18. K. Schabowicz, Ultrasonic tomography -The latest nondestructive technique for testing concrete members -Description, test methodology, application example, Arch. Civ. Mech. Eng. 14 (2014) 295-303, https://doi.org/10.1016/j. acme.2013.10.006. open in new tab
  19. W. Neubauer, A. Eder-Hinterleitner, S. Seren, P. Melichar, Georadar in the Roman civil town Carnuntum, Austria: An approach for archaeological interpretation of GPR data, Archaeol. Prospect. 9 (2002) 135-156, https:// doi.org/10.1002/arp.183. open in new tab
  20. D. Goodman, Y. Nishimura, J.D. Rogers, GPR time slices in archaeological prospection, Archaeol. Prospect. 2 (1995) 85-89.
  21. L. Orlando, Georadar data collection, anomaly shapeand archaeological interpretation -a case study from central Italy, Archaeol. Prospect. 14 (2007) 213-225, https://doi.org/10.1002/arp.311 Georadar. open in new tab
  22. G. De Donno, L. Di Giambattista, L. Orlando, High-resolution investigation of masonry samples through GPR and electrical resistivity tomography, Constr. Build. Mater. 154 (2017) 1234-1249, https://doi.org/10.1016/ j.conbuildmat.2017.06.112. open in new tab
  23. R. Samet, E. Çelik, S. Tural, E. S ßengönül, M. Özkan, E. Damcı, Using interpolation techniques to determine the optimal profile interval in ground-penetrating radar applications, J. Appl. Geophys. 140 (2017) 154-167, https://doi.org/ 10.1016/j.jappgeo.2017.04.003. open in new tab
  24. P. Klę sk, M. Kapruziak, B. Olech, Statistical moments calculated via integral images in application to landmine detection from Ground Penetrating Radar 3D scans, Pattern Anal. Appl. 21 (2018) 671-684, https://doi.org/10.1007/ s10044-016-0592-5. open in new tab
  25. W. Zhao, E. Forte, F. Fontana, M. Pipan, G. Tian, GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy, Meas. J. Int. Meas. Confed. 113 (2018) 161-171, https://doi.org/ 10.1016/j.measurement.2017.09.004. open in new tab
  26. D. Shepard, Two-dimensional interpolation function for irregularly-spaced data, in: Proc. -1968 ACM Natl. Conf., 1968: pp. 517-524 open in new tab
  27. F.W. Chen, C.W. Liu, Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan, Paddy Water Environ. 10 (2012) 209-222, https://doi.org/10.1007/s10333-012-0319-1. open in new tab
  28. Y. Mito, M.A.M. Ismail, T. Yamamoto, Multidimensional scaling and inverse distance weighting transform for image processing of hydrogeological structure in rock mass, J. Hydrol. 411 (2011) 25-36, https://doi.org/10.1016/ j.jhydrol.2011.09.018. open in new tab
  29. M. Jing, J. Wu, Fast image interpolation using directional inverse distance weighting for real-time applications, Opt. Commun. 286 (2013) 111-116, https://doi.org/10.1016/j.optcom.2012.09.011. open in new tab
  30. D. Goodman, S. Piro, GPR remote sensing in archaeology, 2013. doi:10.1007/ 978-3-642-31857-3. open in new tab
  31. L. De Mesnard, Computers & geosciences pollution models and inverse distance weighting : some critical remarks, Comput. Geosci. 52 (2013) 459- 469, https://doi.org/10.1016/j.cageo.2012.11.002. open in new tab
Verified by:
Gdańsk University of Technology

seen 138 times

Recommended for you

Meta Tags