Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
Abstract
In this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra with high spatial resolution. Based on the impedance spectra analysis with an appropriate electric equivalent circuit, it was possible to map surface resistance and contact capacitance. Polycrystalline heavy boron-doped diamond (BDD) electrodes were the research object. Recent studies have shown that the exposure of such electrodes to oxidizing environment may result in the modification of termination type, and thus it is a key factor in describing the electric and electrochemical properties of BDD. We have successfully applied multifrequency NIM, which allowed us to prove that the modification of termination type is selective and occurs with different propensity on the grains having specific crystallographic orientation. Furthermore, our approach enabled the detection of even subtle submicroscopic surface heterogeneities, created as a result of various oxidation treatments and to distinguish them from the surface heterogeneity related to the local distribution of boron at the grain boundaries.
Citations
-
1 3
CrossRef
-
0
Web of Science
-
1 3
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
ULTRAMICROSCOPY
pages 34 - 45,
ISSN: 0304-3991 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Zieliński A., Cieślik M., Sobaszek M., Bogdanowicz R., Darowicki K., Ryl J.: Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes// ULTRAMICROSCOPY. -, (2019), s.34-45
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.ultramic.2019.01.004
- Verified by:
- Gdańsk University of Technology
seen 208 times
Recommended for you
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
- K. Siuzdak,
- M. Sawczak,
- R. Bogdanowicz
- + 1 authors