Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes - Publication - Bridge of Knowledge

Search

Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes

Abstract

In this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra with high spatial resolution. Based on the impedance spectra analysis with an appropriate electric equivalent circuit, it was possible to map surface resistance and contact capacitance. Polycrystalline heavy boron-doped diamond (BDD) electrodes were the research object. Recent studies have shown that the exposure of such electrodes to oxidizing environment may result in the modification of termination type, and thus it is a key factor in describing the electric and electrochemical properties of BDD. We have successfully applied multifrequency NIM, which allowed us to prove that the modification of termination type is selective and occurs with different propensity on the grains having specific crystallographic orientation. Furthermore, our approach enabled the detection of even subtle submicroscopic surface heterogeneities, created as a result of various oxidation treatments and to distinguish them from the surface heterogeneity related to the local distribution of boron at the grain boundaries.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 24 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ULTRAMICROSCOPY pages 34 - 45,
ISSN: 0304-3991
Language:
English
Publication year:
2019
Bibliographic description:
Zieliński A., Cieślik M., Sobaszek M., Bogdanowicz R., Darowicki K., Ryl J.: Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes// ULTRAMICROSCOPY. -, (2019), s.34-45
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ultramic.2019.01.004
Bibliography: test
  1. Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930-933. open in new tab
  2. Khalakhan, I.; Choukourov, A.; Vorokhta, M.; Kúš, P.; Matolínová, I.; Matolín, V. In situ electrochemical AFM monitoring of the potential-dependent deterioration of platinum catalyst during potentiodynamic cycling. Ultramicroscopy 2018, 187, 64-70. open in new tab
  3. Shi, Y.; Collins, L.; Balke, N.; Liaw, P.K.; Yang, B. In-situ electrochemical-AFM study of localized corrosion of Al x CoCrFeNi high-entropy alloys in chloride solution. Appl. Surf. Sci. 2018, 439, 533-544. open in new tab
  4. Izquierdo, J.; Fernández-Pérez, B.M.; Eifert, A.; Souto, R.M.; Kranz, C. SIMULTANEOUS ATOMIC FORCE- SCANNING ELECTROCHEMICAL MICROSCOPY (AFM-SECM) IMAGING OF COPPER DISSOLUTION. Electrochimica Acta 2016, 201, 320-332. open in new tab
  5. Passian, A.; Siopsis, G. Quantum state atomic force microscopy. Phys. Rev. A 2017, 95. open in new tab
  6. Shanak, H. Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ion. 2004, 171, 99-106. open in new tab
  7. Ando, T. Molecular machines directly observed by high-speed atomic force microscopy. FEBS Lett. 2013, 587, 997- 1007. open in new tab
  8. Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.; Sodeik, B.; Wuite, G.J.L. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. 2009, 106, 9673-9678. open in new tab
  9. Jeffery, S.; Oral, A.; Pethica, J.B. Quantitative electrostatic force measurement in AFM. Appl. Surf. Sci. 2000, 157, 280-284. open in new tab
  10. Martin, Y.; Wickramasinghe, H.K. Magnetic imaging by '"force microscopy"' with 1000 Å resolution. Appl. Phys. Lett. 1987, 50, 1455-1457. open in new tab
  11. Eyben, P.; Xu, M.; Duhayon, N.; Clarysse, T.; Callewaert, S.; Vandervorst, W. Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2002, 20, 471. open in new tab
  12. Shao, R.; Kalinin, S.V.; Bonnell, D.A. Nanoimpedance Microscopy and Spectroscopy. MRS Proc. 2002, 738. open in new tab
  13. Darowicki, K.; Szocinski, M.; Schaefer, K.; Mills, D.J. Investigation of morphological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studies. Prog. Org. Coat. 2011, 71, 65-71. open in new tab
  14. Tobiszewski, M.T.; Zieliński, A.; Darowicki, K. Dynamic Nanoimpedance Characterization of the Atomic Force Microscope Tip-Surface Contact. Microsc. Microanal. 2014, 20, 72-77. open in new tab
  15. Burczyk, L.; Darowicki, K. Local electrochemical impedance spectroscopy in dynamic mode of galvanic coupling. Electrochimica Acta 2018, 282, 304-310. open in new tab
  16. Layson, A.; Gadad, S.; Teeters, D. Resistance measurements at the nanoscale: scanning probe ac impedance spectroscopy. Electrochimica Acta 2003, 48, 2207-2213. open in new tab
  17. Pingree, L.S.C.; Martin, E.F.; Shull, K.R.; Hersam, M.C. Nanoscale Impedance Microscopy-A Characterization Tool for Nanoelectronic Devices and Circuits. IEEE Trans. Nanotechnol. 2005, 4, 255-259. open in new tab
  18. Kruempelmann, J.; Balabajew, M.; Gellert, M.; Roling, B. Quantitative nanoscopic impedance measurements on silver-ion conducting glasses using atomic force microscopy combined with impedance spectroscopy. Solid State Ion. 2011, 198, 16-21. open in new tab
  19. Arutunow, A.; Darowicki, K.; Zieliński, A. Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochimica Acta 2011, 56, 2372-2377. open in new tab
  20. Zieliński, A.; Bogdanowicz, R.; Ryl, J.; Burczyk, L.; Darowicki, K. Local impedance imaging of boron-doped polycrystalline diamond thin films. Appl. Phys. Lett. 2014, 105, 131908. open in new tab
  21. Szociński, M.; Darowicki, K.; Schaefer, K. Application of impedance imaging to evaluation of organic coating degradation at a local scale. J. Coat. Technol. Res. 2013, 10, 65-72. open in new tab
  22. Szociński, M.; Darowicki, K. Performance of zinc-rich coatings evaluated using AFM-based electrical properties imaging. Prog. Org. Coat. 2016, 96, 58-64. open in new tab
  23. Darowicki, K. Theoretical description of the measuring method of instantaneous impedance spectra. J. Electroanal. Chem. 2000, 486, 101-105. open in new tab
  24. Ryl, J.; Bogdanowicz, R.; Slepski, P.; Sobaszek, M.; Darowicki, K. Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 2014, 161, H359-H364. open in new tab
  25. Slepski, P.; Darowicki, K.; Janicka, E.; Lentka, G. A complete impedance analysis of electrochemical cells used as energy sources. J. Solid State Electrochem. 2012, 16, 3539-3549. open in new tab
  26. Ryl, J.; Darowicki, K.; Slepski, P. Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode. Corros. Sci. 2011, 53, 1873-1879. open in new tab
  27. Slepski, P.; Darowicki, K.; Janicka, E.; Sierczynska, A. Application of electrochemical impedance spectroscopy to monitoring discharging process of nickel/metal hydride battery. J. Power Sources 2013, 241, 121-126. open in new tab
  28. Krakowiak, S.; Darowicki, K.; Slepski, P. Impedance investigation of passive 304 stainless steel in the pit pre- initiation state. Electrochimica Acta 2005, 50, 2699-2704. open in new tab
  29. Bondarenko, A.S.; Stephens, I.E.L.; Hansen, H.A.; Pérez-Alonso, F.J.; Tripkovic, V.; Johansson, T.P.; Rossmeisl, J.; Nørskov, J.K.; Chorkendorff, I. The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study. Langmuir 2011, 27, 2058-2066. open in new tab
  30. Gerengi, H.; Darowicki, K.; Slepski, P.; Bereket, G.; Ryl, J. Investigation effect of benzotriazole on the corrosion of brass-MM55 alloy in artificial seawater by dynamic EIS. J. Solid State Electrochem. 2010, 14, 897-902. open in new tab
  31. Berkes, B.B.; Maljusch, A.; Schuhmann, W.; Bondarenko, A.S. Simultaneous Acquisition of Impedance and Gravimetric Data in a Cyclic Potential Scan for the Characterization of Nonstationary Electrode/Electrolyte Interfaces. J. Phys. Chem. C 2011, 115, 9122-9130. open in new tab
  32. Zieliński, A.; Darowicki, K. Implementation and Validation of Multisinusoidal, Fast Impedance Measurements in Atomic Force Microscope Contact Mode. Microsc. Microanal. 2014, 20, 974-981. open in new tab
  33. Darowicki, K.; Zieliński, A.; J Kurzydłowski, K. Application of dynamic impedance spectroscopy to atomic force microscopy. Sci. Technol. Adv. Mater. 2008, 9, 045006. open in new tab
  34. Ivandini, T.A.; Sarada, B.V.; Terashima, C.; Rao, T.N.; Tryk, D.A.; Ishiguro, H.; Kubota, Y.; Fujishima, A. Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. J. Electroanal. Chem. 2002, 521, 117-126. open in new tab
  35. Macpherson, J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015, 17, 2935-2949. open in new tab
  36. Swain, G.M. The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG, and Glassy Carbon Electrodes. J. Electrochem. Soc. 1994, 141, 3382. open in new tab
  37. Kondo, T.; Honda, K.; Tryk, D.A.; Fujishima, A. AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes. Electrochimica Acta 2003, 48, 2739-2748. open in new tab
  38. Xu, J.; Swain, G.M. Oxidation of Azide Anion at Boron-Doped Diamond Thin-Film Electrodes. Anal. Chem. 1998, 70, 1502-1510. open in new tab
  39. Martínez-Huitle, C.A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M.A. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. J. Braz. Chem. Soc. 2008, 19, 150-156. open in new tab
  40. Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. The Analyst 2009, 134, 1965. open in new tab
  41. Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A.; et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 2017, 7, 15707. open in new tab
  42. Niedziałkowski, P.; Bogdanowicz, R.; Zięba, P.; Wysocka, J.; Ryl, J.; Sobaszek, M.; Ossowski, T. Melamine- modified Boron-doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine. Electroanalysis 2016, 28, 211-221. open in new tab
  43. Torrengo, S.; Canteri, R.; Dell'Anna, R.; Minati, L.; Pasquarelli, A.; Speranza, G. XPS and ToF-SIMS investigation of nanocrystalline diamond oxidized surfaces. Appl. Surf. Sci. 2013, 276, 101-111. open in new tab
  44. Bogdanowicz, R.; Fabiańska, A.; Golunski, L.; Sobaszek, M.; Gnyba, M.; Ryl, J.; Darowicki, K.; Ossowski, T.; Janssens, S.D.; Haenen, K.; et al. Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diam. Relat. Mater. 2013, 39, 82-88. open in new tab
  45. Wilson, N.R.; Clewes, S.L.; Newton, M.E.; Unwin, P.R.; Macpherson, J.V. Impact of Grain-Dependent Boron Uptake on the Electrochemical and Electrical Properties of Polycrystalline Boron Doped Diamond Electrodes. J. Phys. Chem. B 2006, 110, 5639-5646. open in new tab
  46. Fabiańska, A.; Bogdanowicz, R.; Zięba, P.; Ossowski, T.; Gnyba, M.; Ryl, J.; Zielinski, A.; Janssens, S.D.; Haenen, K.; Siedlecka, E.M. Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration: Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes. Phys. Status Solidi A 2013, 210, 2040-2047. open in new tab
  47. Pleskov, Y.V.; Evstefeeva, Y.E.; Krotova, M.D.; Varnin, V.P.; Teremetskaya, I.G. Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces. J. Electroanal. Chem. 2006, 595, 168-174. open in new tab
  48. Ryl, J.; Zielinski, A.; Bogdanowicz, R.; Darowicki, K. Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization. Electrochem. Commun. 2017, 83, 41-45. open in new tab
  49. Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744-753. open in new tab
  50. Tachiki, M.; Fukuda, T.; Sugata, K.; Seo, H.; Umezawa, H.; Kawarada, H. Nanofabrication on Hydrogen-Terminated Diamond Surfaces by Atomic Force Microscope Probe-Induced Oxidation. Jpn. J. Appl. Phys. 2000, 39, 4631-4632. open in new tab
  51. Yagi, I.; Notsu, H.; Kondo, T.; Tryk, D.A.; Fujishima, A. Electrochemical selectivity for redox systems at oxygen- terminated diamond electrodes. J. Electroanal. Chem. 1999, 473, 173-178. open in new tab
  52. Ghodbane, S.; Haensel, T.; Coffinier, Y.; Szunerits, S.; Steinmüller-Nethl, D.; Boukherroub, R.; Ahmed, S.I.-U.; Schaefer, J.A. HREELS Investigation of the Surfaces of Nanocrystalline Diamond Films Oxidized by Different Processes. Langmuir 2010, 26, 18798-18805. open in new tab
  53. Simon, N.; Girard, H.; Ballutaud, D.; Ghodbane, S.; Deneuville, A.; Herlem, M.; Etcheberry, A. Effect of H and O termination on the charge transfer of moderately boron doped diamond electrodes. Diam. Relat. Mater. 2005, 14, 1179-1182. open in new tab
  54. Girard, H.; Simon, N.; Ballutaud, D.; Herlem, M.; Etcheberry, A. Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes. Diam. Relat. Mater. 2007, 16, 316-325. open in new tab
  55. Synthetic diamond films: preparation, electrochemistry, characterization, and applications; Brillas, E., Martínez- Huitle, C.A., Eds.; Wiley series on electrocatalysis and electrochemistry; open in new tab
  56. John Wiley & Sons: Hoboken, N.J, 2011; ISBN 978-0-470-48758-7.
  57. Garbellini, G.S.; Uliana, C.V.; Yamanaka, H. Detection of DNA nucleotides on pretreated boron doped diamond electrodes. J. Braz. Chem. Soc. 2011. open in new tab
  58. Kasahara, S.; Natsui, K.; Watanabe, T.; Yokota, Y.; Kim, Y.; Iizuka, S.; Tateyama, Y.; Einaga, Y. Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. Anal. Chem. 2017, 89, 11341-11347. open in new tab
  59. Ivandini, T.A.; Rao, T.N.; Fujishima, A.; Einaga, Y. Electrochemical Oxidation of Oxalic Acid at Highly Boron- Doped Diamond Electrodes. Anal. Chem. 2006, 78, 3467-3471. open in new tab
  60. Watanabe, T.; Akai, K.; Einaga, Y. The reduction behavior of free chlorine at boron-doped diamond electrodes. Electrochem. Commun. 2016, 70, 18-22. open in new tab
  61. Anderson, A.B.; Kang, D.B. Quantum Chemical Approach to Redox Reactions Including Potential Dependence: Application to a Model for Hydrogen Evolution from Diamond. J. Phys. Chem. A 1998, 102, 5993-5996. open in new tab
  62. Zhang, L.; Zhu, D.; Nathanson, G.M.; Hamers, R.J. Selective Photoelectrochemical Reduction of Aqueous CO 2 to CO by Solvated Electrons. Angew. Chem. Int. Ed. 2014, 53, 9746-9750. open in new tab
  63. Zhang, G.-J.; Song, K.-S.; Nakamura, Y.; Ueno, T.; Funatsu, T.; Ohdomari, I.; Kawarada, H. DNA Micropatterning on Polycrystalline Diamond via One-Step Direct Amination. Langmuir 2006, 22, 3728-3734. open in new tab
  64. Spătaru, T.; Osiceanu, P.; Anastasescu, M.; Pătrinoiu, G.; Munteanu, C.; Spătaru, N.; Fujishima, A. Effect of the chemical termination of conductive diamond substrate on the resistance to carbon monoxide-poisoning during methanol oxidation of platinum particles. J. Power Sources 2014, 261, 86-92. open in new tab
  65. Szunerits, S.; Jama, C.; Coffinier, Y.; Marcus, B.; Delabouglise, D.; Boukherroub, R. Direct amination of hydrogen- terminated boron doped diamond surfaces. Electrochem. Commun. 2006, 8, 1185-1190. open in new tab
  66. Pleskov, Y.V.; Evstefeeva, Y.E.; Varnin, V.P.; Teremetskaya, I.G. Synthetic Semiconductor Diamond Electrodes: Electrochemical Characteristics of Homoepitaxial Boron-doped Films Grown at the (111), (110), and (100) Faces of Diamond Crystals. Russ. J. Electrochem. 2004, 40, 886-892. open in new tab
  67. Ryl, J.; Burczyk, L.; Bogdanowicz, R.; Sobaszek, M.; Darowicki, K. Study on surface termination of boron-doped diamond electrodes under anodic polarization in H 2 SO 4 by means of dynamic impedance technique. Carbon 2016, 96, 1093-1105. open in new tab
  68. Grot, S.A.; Gildenblat, G.S.; Hatfield, C.W.; Wronski, C.R.; Badzian, A.R.; Badzian, T.; Messier, R. The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film. IEEE Electron Device Lett. 1990, 11, 100-102. open in new tab
  69. Notsu, H. Introduction of Oxygen-Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization. Electrochem. Solid-State Lett. 1999, 2, 522. open in new tab
  70. Boukherroub, R.; Wallart, X.; Szunerits, S.; Marcus, B.; Bouvier, P.; Mermoux, M. Photochemical oxidation of hydrogenated boron-doped diamond surfaces. Electrochem. Commun. 2005, 7, 937-940. open in new tab
  71. Wang, M.; Simon, N.; Charrier, G.; Bouttemy, M.; Etcheberry, A.; Li, M.; Boukherroub, R.; Szunerits, S. Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach. Electrochem. Commun. 2010, 12, 351-354. open in new tab
  72. Švorc, Ľ.; Rievaj, M.; Bustin, D. Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sens. Actuators B Chem. 2013, 181, 294-300. open in new tab
  73. Pehrsson, P.E.; Mercer, T.W.; Chaney, J.A. Thermal oxidation of the hydrogenated diamond () surface. Surf. Sci. 2002, 497, 13-28. open in new tab
  74. Vanhove, E.; de Sanoit, J.; Arnault, J.C.; Saada, S.; Mer, C.; Mailley, P.; Bergonzo, P.; Nesladek, M. Stability of H- terminated BDD electrodes: an insight into the influence of the surface preparation. Phys. Status Solidi A 2007, 204, 2931-2939. open in new tab
  75. Geisler, M.; Hugel, T. Aging of Hydrogenated and Oxidized Diamond. Adv. Mater. 2010, 22, 398-402. open in new tab
  76. Couto, A.B.; Santos, L.C.D.; Matsushima, J.T.; Baldan, M.R.; Ferreira, N.G. Hydrogen and oxygen plasma enhancement in the Cu electrodeposition and consolidation processes on BDD electrode applied to nitrate reduction. Appl. Surf. Sci. 2011, 257, 10141-10146. open in new tab
  77. Wang, M.; Simon, N.; Decorse-Pascanut, C.; Bouttemy, M.; Etcheberry, A.; Li, M.; Boukherroub, R.; Szunerits, S. Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes. Electrochimica Acta 2009, 54, 5818-5824. open in new tab
  78. Ghodbane, S.; Ballutaud, D.; Deneuville, A.; Baron, C. Influence of boron concentration on the XPS spectra of the (100) surface of homoepitaxial boron-doped diamond films. Phys. Status Solidi A 2006, 203, 3147-3151. open in new tab
  79. B. Oliveira, S.C.; Oliveira-Brett, A.M. Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode. Electrochimica Acta 2010, 55, 4599-4605. open in new tab
  80. Morris, G.P.; Simonov, A.N.; Mashkina, E.A.; Bordas, R.; Gillow, K.; Baker, R.E.; Gavaghan, D.J.; Bond, A.M. A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathologically Variable [Fe(CN) 6 ] 3-/4-Process by AC Voltammetry. Anal. Chem. 2013, 85, 11780-11787. open in new tab
  81. Ryl, J.; Burczyk, L.; Bogdanowicz, R.; Sobaszek, M.; Darowicki, K. Study on surface termination of boron-doped diamond electrodes under anodic polarization in H 2 SO 4 by means of dynamic impedance technique. Carbon 2016, 96, 1093-1105. open in new tab
  82. Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Gnyba, M.; Ficek, M.; Gołuński, Ł.; Bock, W.J.; Śmietana, M.; Darowicki, K. Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding. Diam. Relat. Mater. 2015, 55, 52-63. open in new tab
  83. Jiang, Y.; Liu, D.; Jiang, Z.; Mao, B.; Ma, X.; Li, Q. Investigation on Electrochemically Cathodic Polarization of Boron-Doped Diamond Electrodes and Its Influence on Lead Ions Analysis. J. Electrochem. Soc. 2014, 161, H410- H415. open in new tab
  84. Chaplin, B.P.; Hubler, D.K.; Farrell, J. Understanding anodic wear at boron doped diamond film electrodes. Electrochimica Acta 2013, 89, 122-131. open in new tab
  85. Ricci, P.C.; Anedda, A.; Carbonaro, C.M.; Clemente, F.; Corpino, R. Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectroscopy study. Thin Solid Films 2005, 482, 311-317. open in new tab
  86. Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744-753. open in new tab
  87. Baral, B.; Chan, S.S.M.; Jackman, R.B. Cleaning thin-film diamond surfaces for device fabrication: An Auger electron spectroscopic study. J. Vac. Sci. Technol. Vac. Surf. Films 1996, 14, 2303-2307. open in new tab
  88. Ferro, S.; Dal Colle, M.; De Battisti, A. Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 2005, 43, 1191-1203. open in new tab
  89. Swain, G.M.; Ramesham, R. The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 1993, 65, 345-351. open in new tab
  90. Granger, M.C.; Witek, M.; Xu, J.; Wang, J.; Hupert, M.; Hanks, A.; Koppang, M.D.; Butler, J.E.; Lucazeau, G.; Mermoux, M.; et al. Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes. Anal. Chem. 2000, 72, 3793-3804. open in new tab
  91. O'Hayre, R.; Lee, M.; Prinz, F.B. Ionic and electronic impedance imaging using atomic force microscopy. J. Appl. Phys. 2004, 95, 8382-8392. open in new tab
  92. O'Hayre, R.; Feng, G.; Nix, W.D.; Prinz, F.B. Quantitative impedance measurement using atomic force microscopy. J. Appl. Phys. 2004, 96, 3540-3549. open in new tab
  93. Gao, F.; Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 2012, 51, 259-277. open in new tab
  94. Baer, D.R.; Engelhard, M.H.; Gaspar, D.J.; Lea, A.S.; Windisch, C.F. Use and limitations of electron flood gun control of surface potential during XPS: two non-homogeneous sample types. Surf. Interface Anal. 2002, 33, 781- 790. open in new tab
  95. Zieliński, A. Application of different modes of Nanoscale Impedance Microscopy in materials research. Surf. Innov. 2015, 1-25. open in new tab
  96. Ryl, J.; Zielinski, A.; Burczyk, L.; Bogdanowicz, R.; Ossowski, T.; Darowicki, K. Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices. Electrochimica Acta 2017, 242, 268-279. open in new tab
  97. Sarid, D. Exploring scanning probe microscopy with mathematica; 2., completely rev. and enl. ed.; Wiley-VCH-Verl: Weinheim, 2007; ISBN 978-3-527-40617-3. open in new tab
  98. Holt, K.B.; Bard, A.J.; Show, Y.; Swain, G.M. Scanning Electrochemical Microscopy and Conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels. J. Phys. Chem. B 2004, 108, 15117-15127. open in new tab
  99. Fumagalli, L.; Ferrari, G.; Sampietro, M.; Casuso, I.; Martínez, E.; Samitier, J.; Gomila, G. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy. Nanotechnology 2006, 17, 4581-4587. open in new tab
  100. Sun, Y.; Mortensen, H.; Schär, S.; Lucier, A.-S.; Miyahara, Y.; Grütter, P.; Hofer, W. From tunneling to point contact: Correlation between forces and current. Phys. Rev. B 2005, 71. open in new tab
  101. Wilson, N.R.; Clewes, S.L.; Newton, M.E.; Unwin, P.R.; Macpherson, J.V. Impact of Grain-Dependent Boron Uptake on the Electrochemical and Electrical Properties of Polycrystalline Boron Doped Diamond Electrodes. J. Phys. Chem. B 2006, 110, 5639-5646. open in new tab
  102. Deslouis, C.; de Sanoit, J.; Saada, S.; Mer, C.; Pailleret, A.; Cachet, H.; Bergonzo, P. Electrochemical behaviour of (111) B-Doped Polycrystalline Diamond: Morphology/surface conductivity/activity assessed by EIS and CS-AFM. Diam. Relat. Mater. 2011, 20, 1-10. open in new tab
  103. Ayres, Z.J.; Borrill, A.J.; Newland, J.C.; Newton, M.E.; Macpherson, J.V. Controlled sp 2 Functionalization of Boron Doped Diamond as a Route for the Fabrication of Robust and Nernstian pH Electrodes. Anal. Chem. 2016, 88, 974- 980. open in new tab
  104. Tokuda, N.; Umezawa, H.; Ri, S.-G.; Yamabe, K.; Okushi, H.; Yamasaki, S. Roughening of atomically flat diamond (111) surfaces by a hot HNO3/H2SO4 solution. Diam. Relat. Mater. 2008, 17, 486-488. open in new tab
  105. Pehrsson, P.E.; Mercer, T.W. Oxidation of heated diamond C(100):H surfaces. Surf. Sci. 2000, 460, 74-90. open in new tab
  106. Ensch, M.; Maldonado, V.Y.; Swain, G.M.; Rechenberg, R.; Becker, M.F.; Schuelke, T.; Rusinek, C.A. Isatin Detection Using a Boron-Doped Diamond 3-in-1 Sensing Platform. Anal. Chem. 2018, 90, 1951-1958. open in new tab
  107. Lai, L.; Barnard, A.S. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 2011, 3, 2566. open in new tab
  108. Petrini, D.; Larsson, K. Origin of the Reactivity on the Nonterminated (100), (110), and (111) Diamond Surfaces: An Electronic Structure DFT Study. J. Phys. Chem. C 2008, 112, 14367-14376. open in new tab
  109. Petrini, D.; Larsson, K. Theoretical Study of the Thermodynamic and Kinetic Aspects of Terminated (111) Diamond Surfaces. J. Phys. Chem. C 2008, 112, 3018-3026. open in new tab
  110. Goverapet Srinivasan, S.; van Duin, A.C.T. Direction dependent etching of diamond surfaces by hyperthermal atomic oxygen: A ReaxFF based molecular dynamics study. Carbon 2015, 82, 314-326.
  111. Ghodbane, S.; Ballutaud, D.; Omnès, F.; Agnès, C. Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films. Diam. Relat. Mater. 2010, 19, 630-636. open in new tab
  112. Graupner, R.; Maier, F.; Ristein, J.; Ley, L.; Jung, C. High-resolution surface-sensitive C 1 s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces. Phys. Rev. B 1998, 57, 12397-12409. open in new tab
  113. Bogdanowicz, R. Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica. Metrol. Meas. Syst. 2014, 21, 381-388. open in new tab
  114. Wang, Z.L.; Lu, C.; Li, J.J.; Gu, C.Z. Effect of gas composition on the growth and electrical properties of boron- doped diamond films. Diam. Relat. Mater. 2009, 18, 132-135. open in new tab
  115. Liao, X.Z.; Zhang, R.J.; Lee, C.S.; Lee, S.T.; Lam, Y.W. The influence of boron doping on the structure and characteristics of diamond thin films. Diam. Relat. Mater. 1997, 6, 521-525. open in new tab
  116. Ballutaud, D.; Simon, N.; Girard, H.; Rzepka, E.; Bouchet-Fabre, B. Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface. Diam. Relat. Mater. 2006, 15, 716-719. open in new tab
  117. Diederich, L.; Küttel, O..; Ruffieux, P.; Pillo, T.; Aebi, P.; Schlapbach, L. Photoelectron emission from nitrogen-and boron-doped diamond (100) surfaces. Surf. Sci. 1998, 417, 41-52. open in new tab
  118. Girard, H.A.; Simon, N.; Ballutaud, D.; Etcheberry, A. Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes. Comptes Rendus Chim. 2008, 11, 1010-1015. open in new tab
  119. Girard, H.; Simon, N.; Ballutaud, D.; Herlem, M.; Etcheberry, A. Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes. Diam. Relat. Mater. 2007, 16, 316-325. open in new tab
  120. Wang, M.; Simon, N.; Decorse-Pascanut, C.; Bouttemy, M.; Etcheberry, A.; Li, M.; Boukherroub, R.; Szunerits, S. Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes. Electrochimica Acta 2009, 54, 5818-5824. open in new tab
  121. Lee, H.-J.; Jeon, H.; Lee, W.-S. Synergistic Interaction between Substrate and Seed Particles in Ultrathin Ultrananocrystalline Diamond Film Nucleation on SiO2 with Controlled Surface Termination. J. Phys. Chem. C 2012, 116, 9180-9188. open in new tab
  122. Bowles, R.D.; Setton, L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017, 129, 54- 67. open in new tab
  123. Ma, Z.; Gao, C.; Gong, Y.; Shen, J. Chondrocyte behaviors on poly-l-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups. Biomaterials 2003, 24, 3725-3730. open in new tab
Verified by:
Gdańsk University of Technology

seen 168 times

Recommended for you

Meta Tags