Optimization of liquid chromatographic separation of pharmaceuticals within green analytical chemistry framework - Publication - MOST Wiedzy


Optimization of liquid chromatographic separation of pharmaceuticals within green analytical chemistry framework


The contribution is aimed at the development of methodology that allows to consider green analytical chemistry criteria during optimization of liquid chromatographic separation with design of experiment. The objectives of the optimization are maximization of peak areas of five non-steroid anti-inflammatory drugs, maximization of resolution between peaks, with simultaneous shortening of chromatographic separation time and minimization of mobile phase environmental impact. This is obtained with design of experiment to consider many experimental conditions and Derringer's desirability function to combine many optimization objectives. The possibilities of introduction different green analytical chemistry metrics are discussed and the methodology of mobile phase greenness assessment is proposed. The optimal response for all objectives is obtained for 0.96 mL min−1 of mobile phase flow rate, 61% of MeOH content, temperature of 25°C and pH equal to 4.5. The separation takes less than 9 min.


  • 2


  • 0

    Web of Science

  • 1



artykuły w czasopismach
Published in:
MICROCHEMICAL JOURNAL no. 152, pages 1 - 5,
ISSN: 0026-265X
Publication year:
Bibliographic description:
Dogan A., Tobiszewski M.: Optimization of liquid chromatographic separation of pharmaceuticals within green analytical chemistry framework// MICROCHEMICAL JOURNAL -Vol. 152, (2020), s.1-5
Digital Object Identifier (open in new tab) 10.1016/j.microc.2019.104323
Bibliography: test
  1. J. Namieśnik, Trends in environmental analytics and monitoring, Crit. Rev. Anal. Chem. 30 (2000) 221-269 https://doi.org/10.1080/10408340091164243. open in new tab
  2. P.T. Anastas, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem. 29 (1999) 167-175 https://doi.org/10.1080/ 10408349891199356. open in new tab
  3. M. Koel, M. Kaljurand, Application of the principles of green chemistry in analytical chemistry, Pure Appl. Chem. 78 (2006) 1993-2002 https://doi.org/10.1351/ pac200678111993. open in new tab
  4. M. Tobiszewski, A. Mechlińska, J. Namieśnik, Green analytical chemistry-theory and practice, Chem. Soc. Rev. 39 (2010) 2869-2878 https://doi.org/10.1039/ B926439F. open in new tab
  5. C.J. Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, ... L. Zhou, Greening analytical chromatography, TrAC Trends Anal. Chem. 29 (7) (2010) 667-680 https://doi.org/10.1016/j.trac.2010.03.008. open in new tab
  6. J. Płotka, M. Tobiszewski, A.M. Sulej, M. Kupska, T. Gorecki, J. Namieśnik, Green chromatography, J. Chromatogr. A 1307 (2013) 1-20 https://doi.org/10.1016/j. chroma.2013.07.099. open in new tab
  7. H. Shaaban, New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals, Anal. Bioanal. Chem. 408 (25) (2016) 6929-6944 https://doi. org/10.1007/s00216-016-9726-2. open in new tab
  8. H.M. Mohamed, Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis, Trends Anal. Chem. 66 (2015) 176-192 https://doi.org/10.1016/j.trac.2014.11.010. open in new tab
  9. A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices, Trends Anal. Chem. 50 (2013) 78-84 https://doi.org/10.1016/j.trac.2013.04.010. open in new tab
  10. D.B. Hibbert, Experimental design in chromatography: a tutorial review, J. Chromatogr. B 910 (2012) 2-13 https://doi.org/10.1016/j.jchromb.2012.01. 020Get. open in new tab
  11. G. Derringer, R. Suich, Simultaneous optimization of several response variables, J. Qual. Tech. 12 (1980) 214-219 https://doi.org/10.1080/00224065.1980. 11980968. open in new tab
  12. M.A. Bezerra, S.L.C. Ferreira, C.G. Novaes, A.M.P. dos Santos, G.S. Valasques, U.M. da Mata Cerqueira, J.P. dos Santos Alves, Simultaneous optimization of multiple responses and its application in analytical chemistry-a review, Talanta 194 (2019) 941-959 https://doi.org/10.1016/j.talanta.2018.10.088. open in new tab
  13. L.V. Candioti, M.M. De Zan, M.S. Camara, H.C. Goicoechea, Experimental design and multiple response optimization. Using the desirability function in analytical methods development, Talanta 124 (2014) 123-138 https://doi.org/10.1016/j. talanta.2014.01.034. open in new tab
  14. N.H. Abou-Taleb, D.R. El-Wasseef, D.T. El-Sherbiny, S.M. El-Ashry, Multiobjective optimization strategy based on desirability functions used for the microemulsion liquid chromatographic separation and quantification of norfloxacin and tinidazole in plasma and formulations, J. Sep. Sci. 38 (2015) 901-908 https://doi.org/10. 1002/jssc.201401203. open in new tab
  15. K. Abu-Izza, L. Garcia-Contreras, D.R. Lu, Preparation and evaluation of zidovu- dine-loaded sustained-release microspheres. 2. Optimization of multiple response variables, J. Pharm. Sci. 85 (1996) 572-576 https://doi.org/10.1021/js960021k. open in new tab
  16. P. Barmpalexis, F.I. Kanaze, E. Georgarakis, Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology, J. Pharm. Biomed. Anal. 49 (2009) 1192-1202 https://doi.org/10.1016/j.jpba.2009. 03.003. open in new tab
  17. M. Cruz-Monteagudo, F. Borges, M.N.D. Cordeiro, Desirability-based multiobjective optimization for global QSAR studies: application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles, J. Comput. Chem. 29 (2008) 2445-2459 https://doi.org/10.1002/jcc.20994. open in new tab
  18. P. Cutroneo, M. Beljean, R.P.T. Luu, A.-.M. Siouffi, Optimization of the separation of some psychotropic drugs and their respective metabolites by liquid chromato- graphy, J. Pharm. Biomed. Anal. 41 (2006) 333-340 https://doi.org/10.1016/j. jpba.2005.10.050. open in new tab
  19. R. Djang'eing'a Marini, P. Chiap, B. Boulanger, W. Dewe, P. Hubert, J. Crommen, LC method for the simultaneous determination of R-timolol and other closely related impurities in S-timolol maleate: optimization by use of an experimental design, J. Sep. Sci. 26 (2003) 809-817 https://doi.org/10.1002/jssc.200301367. open in new tab
  20. P. Giriraj, T. Sivakkumar, Development and validation of a rapid chemometrics assisted RP-HPLC with PDA detection method for the simultaneous estimation of pyridoxine HCl and doxylamine succinate in bulk and pharmaceutical dosage form, Chromatogr. Res. Int. 2014 (2014), http://dx.doi.org/10.1155/2014/827895. open in new tab
  21. P. Giriraj, T. Sivakkumar, A rapid-chemometrics assisted RP-HPLC method with PDA detection for the simultaneous estimation of ofloxacin and nimorazole in pharmaceutical formulation, J. Liq. Chromatogr. Related Technol. 38 (2015) 904-910 https://doi.org/10.1080/10826076.2014.991870. open in new tab
  22. N. Hatambeygi, G. Abedi, M. Talebi, Method development and validation for op- timised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology, J. Chromatogr. A 1218 (2011) 5995-6003 https://doi.org/10.1016/ j.chroma.2011.06.009. open in new tab
  23. V.S. Janardhanan, R. Manavalan, K. Valliappan, Chemometric technique for the optimization of chromatographic system: simultaneous HPLC determination of ro- suvastatin, telmisartan, ezetimibe and atorvastatin used in combined cardiovascular therapy, Arab. J. Chem. 9 (2016) S1378-S1387 https://doi.org/10.1016/j.arabjc. 2012.03.001. open in new tab
  24. B. Otašević, S. Milovanović, M. Zečević, J. Golubović, A. Protić, UPLC method for determination of moxonidine and its degradation products in active pharmaceutical ingredient and pharmaceutical dosage form, Chromatographia 77 (2014) 109-118 https://doi.org/10.1007/s10337-013-2580-x. open in new tab
  25. T. Sivakumar, R. Manavalan, C. Muralidharan, K. Valliappan, Multi-criteria deci- sion making approach and experimental design as chemometric tools to optimize HPLC separation of domperidone and pantoprazole, J. Pharm. Biomed. Anal. 43 (2007) 1842-1848 https://doi.org/10.1016/j.jpba.2006.12.007. open in new tab
  26. T. Sivakumar, R. Manavalan, C. Muralidharan, K. Valliappan, An improved HPLC method with the aid of a chemometric protocol: simultaneous analysis of amlodi- pine and atorvastatin in pharmaceutical formulations, J. Sep. Sci. 30 (2007) 3143-3153 https://doi.org/10.1002/jssc.200700148. open in new tab
  27. R.S. Sundar, K. Valliappan, An improved RP-HPLC method for the simultaneous estimation of aspirin, atorvastatin, and clopidogrel in pharmaceutical formulation using experimental design methodology, Int. J. Pharm. Pharm. Sci. 6 (2014) 279-283. open in new tab
  28. R. Suresh, R. Manavalan, K. Valliappan, Developing and optimizing a validated RP- HPLC method for the analysis of amlodipine and ezetimibe with atorvastatin in pharmaceutical dosage forms applying response surface methodology, Int. J. Pharm. Pharm. Sci. 4 (2012) 550-558.
  29. P. Venkatesan, V.S. Janardhanan, C. Muralidharan, K. Valliappan, Improved HPLC method with the aid of chemometric strategy: determination of loxoprofen in pharmaceutical formulation, Acta Chim. Slov. 59 (2012) 242-248.
  30. L.H. Keith, L.U. Gron, J.L. Young, Green analytical methodologies, Chem. Rev. 107 (2007) 2695-2708 https://doi.org/10.1021/cr068359e. open in new tab
  31. A. Gałuszka, Z.M. Migaszewski, P. Konieczka, J. Namieśnik, Analytical Eco-Scale for assessing the greenness of analytical procedures, TrAC Trends Anal. Chem. 37 (2012) 61-72 https://doi.org/10.1016/j.trac.2012.03.013. open in new tab
  32. J. Płotka-Wasylka, A new tool for the evaluation of the analytical procedure: green analytical procedure index, Talanta 181 (2018) 204-209 https://doi.org/10.1016/ j.talanta.2018.01.013. open in new tab
  33. M. Tobiszewski, J. Namieśnik, Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards, Ecotoxicol. Environ. Saf. 120 (2015) 169-173 https://doi.org/10.1016/j.ecoenv.2015.05.043. open in new tab
  34. F.P. Byrne, S. Jin, G. Paggiola, T.H. Petchey, J.H. Clark, T.J. Farmer, A.J. Hunt, C.R. McElroy, J. Sherwood, Tools and techniques for solvent selection: green sol- vent selection guides, Sustain. Chem. Process. 4 (2016) 7 https://doi.org/10.1186/ s40508-016-0051-z. open in new tab
  35. D. Prat, J. Hayler, A. Wells, A survey of solvent selection guides, Green Chem. 16 (2014) 4546-4551 https://doi.org/10.1039/C4GC01149J. open in new tab
  36. P. Bigus, J. Namieśnik, M. Tobiszewski, Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction opti- mization for chlorophenols determination, J. Chromatogr. A 1553 (2018) 25-31 https://doi.org/10.1016/j.chroma.2018.04.018. open in new tab
  37. Y. Gaber, U. Törnvall, M.A. Kumar, M.A. Amin, R. Hatti-Kaul, HPLC-EAT (Environmental Assessment Tool): a tool for profiling safety, health and environ- mental impacts of liquid chromatography methods, Green Chem. 13 (8) (2011) 2021-2025, https://doi.org/10.1039/C0GC00667J. open in new tab
  38. M.B. Hicks, W. Farrell, C. Aurigemma, L. Lehmann, L. Weisel, K. Nadeau, ... open in new tab
  39. P. Ferguson, Making the move towards modernized greener separations: introduc- tion of the analytical method greenness score (AMGS) calculator, Green Chem. 21 (7) (2019) 1816-1826, https://doi.org/10.1039/C8GC03875A. open in new tab
Verified by:
Gdańsk University of Technology

seen 47 times

Recommended for you

Meta Tags