Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis - Publication - Bridge of Knowledge

Search

Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis

Abstract

Ammonium metavanadate, NH4VO3, plays an important role in the preparation of vanadium oxides and other ammonium compounds, such as NH4V3O8, (NH4)2V3O8, and NH4V4O10, which were found to possess interesting electrochemical properties. In this work, a new route for the synthesis of NH4VO3 is proposed by mixing an organic ammonium salt and V2O5 in a suitable solvent. The one-step procedure is carried out at room temperature. Additionally, the need for pH control and use of oxidants necessary in known methods is eliminated. The mechanism of the NH4VO3 formation is explained. It is presented that it is possible to tailor the morphology and size of the obtained NH4VO3 crystals, depending on the combination of reagents. Nano- and microcrystals of NH4VO3 are obtained and used as precursors in the hydrothermal synthesis of higher ammonium vanadates. It is proven that the size of the precursor particles can significantly affect the physical and chemical properties of the resulting products.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 75 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 12, pages 1 - 11,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Prześniak-Welenc M., Nadolska M., Kościelska B., Sadowska K.: Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis// Materials -Vol. 12,iss. 20 (2019), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12203446
Bibliography: test
  1. Liu, Y.; Xu, M.; Shen, B.; Xia, Z.; Li, Y.; Wu, Y.; Li, Q. Facile synthesis of mesoporous NH 4 V 4 O 10 nanoflowers with high performance as cathode material for lithium battery. J. Mater. Sci. 2018, 53, 2045-2053. [CrossRef] open in new tab
  2. Mai, L.Q.; Lao, C.S.; Hu, B.; Zhou, J.; Qi, Y.Y.; Chen, W.; Gu, E.D.; Wang, Z.L. Synthesis and electrical transport of single-crystal NH 4 V 3 O 8 nanobelts. J. Phys. Chem. B 2006, 110, 18138-18141. [CrossRef] [PubMed] open in new tab
  3. Chen, Q.; Xia, Q.; Xu, Y.; Wang, P.; Tan, Q. NH 4 V 4 O 10 micro-flowers as cathode material for high performance hybrid magnesium-lithium-ion batteries. Mater. Lett. 2019, 247, 178-181. [CrossRef] open in new tab
  4. Wang, H.; Ren, Y.; Wang, W.; Huang, X.; Huang, K.; Wang, Y.; Liu, S. NH 4 V 3 O 8 nanorod as a high performance cathode material for rechargeable Li-ion batteries. J. Power Sources 2012, 199, 315-321. [CrossRef] open in new tab
  5. Ma, Y.; Ji, S.; Zhou, H.; Zhang, S.; Li, R.; Zhu, J.; Li, W.; Guo, H.; Jin, P. Synthesis of novel ammonium vanadium bronze (NH 4 ) 0.6 V 2 O 5 and its application in Li-ion battery. RSC Adv. 2015, 5, 90888-90894. [CrossRef] open in new tab
  6. Cheng, Y.; Huang, J.; Li, J.; Cao, L.; Xu, Z.; Wu, J.; Cao, S.; Hu, H. Structure-controlled synthesis and electrochemical properties of NH 4 V 3 O 8 as cathode material for Lithium ion batteries. Electrochim. Acta 2016, 212, 217-224. [CrossRef] open in new tab
  7. Tian, X.; Xu, X.; He, L.; Wei, Q.; Yan, M.; Xu, L.; Zhao, Y.; Yang, C.; Mai, L. Ultrathin pre-lithiated V 6 O 13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 2014, 255, 235-241. [CrossRef] open in new tab
  8. Vo, TN.; Kim, H.; Hur, J.; Choi, W.; Kim, T. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J. Mater. Chem. A 2018, 6, 22645-22654. [CrossRef] open in new tab
  9. Esparcia, E.; Chae, M.; Ocon, J.; Hong, S. Ammonium Vanadium Bronze (NH 4 V 4 O 10 ) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chem. Mater. 2018, 30, 3690-3696. [CrossRef] open in new tab
  10. Wei, T.; Li, Q.; Yang, G.; Wang, C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH 4 ) 2 V 10 O 25 ·8H 2 O nanobelt. J. Mater. Chem. A 2018, 6, 20402-20410. [CrossRef] open in new tab
  11. Yang, G.; Wei, T.; Wang, C. Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides. ACS Appl. Mater. Interfaces 2018, 1041, 35079-35089. [CrossRef] [PubMed] open in new tab
  12. Lai, J.; Zhu, H.; Zhu, X.; Koritala, H.; Wang, Y. Interlayer-Expanded V 6 O 13 n H 2 O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 1988-1996. [CrossRef] open in new tab
  13. Sonar, S.S.; Kategaonkar, A.H.; Ware, M.N.; Gill, C.H.; Shingate, B.B.; Shingare, M.S. Ammonium metavanadate: An effective catalyst for synthesis of α hydroxyphosphonates. Arkivoc 2009, 2, 138-148. open in new tab
  14. Si, Y.; Xiong, Z.; Zheng, X.; Li, M.; Yang, Q. Improving the Anti-Corrosion Ability of Anodization Film of AZ31B Magnesium Alloy by Addition of NH 4 VO 3 in the Electrolyte. Int. J. Electrochem. Sci. 2016, 11, 3261-3268. [CrossRef] open in new tab
  15. Brauer, G. Handbook of Preparative Inorganic Chemistry, 2nd ed.; Brauer, G., Ed.; Academic Press Inc.: New York, NY, USA, 1965. open in new tab
  16. Du, G.; Sun, Z.; Xian, Y.; Jing, H.; Chen, H.; Yin, D. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride. J. Cryst. Growth 2016, 441, 117-123. [CrossRef] open in new tab
  17. Mandhane, P.G.; Joshi, R.S.; Ghawalkar, A.R.; Jadhav, G.R.; Gill, C.H. Ammonium metavanadate: A mild and efficient catalyst for the synthesis of coumarins. Bull. Korean Chem. Soc. 2009, 30, 2969-2972. [CrossRef] open in new tab
  18. Jadhav, G.R.; Shaikh, M.U.; Kale, R.P.; Gill, C.H. Ammonium metavanadate: A novel catalyst for synthesis of 2-substituted benzimidazole derivatives. Chin. Chem. Lett. 2009, 20, 292-295. [CrossRef] open in new tab
  19. Niralwad, K.S.; Shingate, B.B.; Shingare, M.S. Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedron Lett. 2010, 51, 3616-3618. [CrossRef] open in new tab
  20. Wu, D.; Wang, C.; Chao, Y.; He, P.; Ma, J. Porous bowl-shaped VS 2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Eng. Chem. 2020, 43, 24-32. [CrossRef] open in new tab
  21. Xie, X.; Mao, M.; Qi, S.; Ma, J. ReS 2 -Based electrode materials for alkali-metal ion batteries. Cryst. Eng. Commun. 2019, 21, 3755-3769. [CrossRef] open in new tab
  22. Rui, X.; Lu, Z.; Yu, H.; Yang, D.; Hng, H.H.; Lim, T.M.; Yan, Q. Ultrathin V 2 O 5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556-560. [CrossRef] [PubMed] open in new tab
  23. Heyns, A.M.; Venter, M.W.; Range, K.J. The vibrational spectra of NH 4 VO 3 at elevated temperatures and pressures. Z. Naturforsch. B 1987, 42, 843-852. [CrossRef] open in new tab
  24. Onodera, S.; Ikegami, Y. Infrared and Raman spectra of ammonium, potassium, rubidium, and cesium metavanadates. Inorg. Chem. 1980, 19, 615-618. [CrossRef] open in new tab
  25. Bruyère, V.I.; Morando, P.J.; Blesa, M.A. The dissolution of vanadium pentoxide in aqueous solutions of oxalic and mineral acids. J. Colloid Interface Sci. 1999, 209, 207-214. [CrossRef] [PubMed] open in new tab
  26. Zhang, K.F.; Zhang, G.Q.; Liu, X.; Su, Z.; Li, H.L. Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 2006, 157, 528-532. [CrossRef] open in new tab
  27. Wang, N.; Chen, W.; Mai, L.; Dai, Y. Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate. J. Solid State Chem. 2008, 181, 652-657. [CrossRef] open in new tab
  28. Vernardou, D.; Apostolopoulou, M.; Louloudakis, D.; Katsarakis, N.; Koudoumas, E. Hydrothermal growth and characterization of shape-controlled NH 4 V 3 O 8 . New J. Chem. 2014, 38, 2098-2104. [CrossRef] open in new tab
  29. Kou, L.; Cao, L.; Huang, J.; Yang, J.; Wang, Y. Facile synthesis of NH 4 V 3 O 8 nanoflowers as advanced cathodes for high performance of lithium ion battery. J. Mater. Sci. Mater. Electron. 2018, 29, 4830-4834. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 208 times

Recommended for you

Meta Tags