The 41Σ+ electronic state of LiCs molecule - Publication - Bridge of Knowledge

Search

The 41Σ+ electronic state of LiCs molecule

Abstract

The 41Σ+ state of LiCs molecule is observed experimentally for the first time. The inverted perturbation approach (IPA) method is used to derive the potential energy curve of the state from the measured spectra. The experiment is accompanied by theoretical calculations of adiabatic potentials for excited states in LiCs including 41Σ+, performed with the MOLPRO program package. The irregular shape of the 41Σ+ state potential predicted by theory is confirmed in the experiment.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 12 times
Publication version
Accepted or Published Version
License
Copyright (EDP Sciences and Springer 2013)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
The European Physical Journal-Special Topics no. 222, pages 2329 - 2333,
ISSN: 1951-6355
Language:
English
Publication year:
2013
Bibliographic description:
Szczepkowski J., Jasik P., Grochola A., Jastrzębski W., Sienkiewicz J., Kowalczyk P.: The 41Σ+ electronic state of LiCs molecule// The European Physical Journal-Special Topics. -Vol. 222, nr. 9 (2013), s.2329-2333
DOI:
Digital Object Identifier (open in new tab) 10.1140/epjst/e2013-02013-0
Bibliography: test
  1. J. von Neumann, E. Wigner, Phys. Z. 30, 467 (1929)
  2. K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006) open in new tab
  3. P. Jasik, J.E. Sienkiewicz, Chem. Phys. 323, 563 (2006) open in new tab
  4. P. Lobacz, P. Jasik, J.E. Sienkiewicz, Cent. Eur. J. Phys. (in print) doi: 10.2478/s11534- 012-0137-5 open in new tab
  5. MOLPRO, version 2006.1, a package of ab initio programs, H.-J. Werner, P.J. Knowles, et al., see [http://www.molpro.net] open in new tab
  6. L. Von Szentpaly, P. Fuentealba, H. Preuss, H. Stoll, Chem. Phys. Lett. 93, 555 (1982)
  7. I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll, J. Chem. Phys. 122, 104103 (2005) open in new tab
  8. P. Fuentealba, H. Preuss, H. Stoll, L. Von Szentply, Chem. Phys. Lett. 89, 418 (1982) open in new tab
  9. D. Feller (unpublished)
  10. W. Jastrzȩbski, P. Kowalczyk, Phys. Rev. A 51, 1046 (1995) open in new tab
  11. J. Szczepkowski, A. Grochola, W. Jastrzebski, P. Kowalczyk, J. Mol. Spectrosc. 276-277, 19 (2012) open in new tab
  12. A. Grochola, J. Szczepkowski, W. Jastrzebski, P. Kowalczyk, J. Chem. Phys. 135, 044318 (2011) open in new tab
  13. P. Staanum, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 75, 042513 (2007) open in new tab
  14. A. Pashov, W. Jastrzebski, P. Kowalczyk, Comput. Phys. Commun. 128, 622 (2000) open in new tab
  15. A. Grochola, P. Kowalczyk, W. Jastrzebski, A. Pashov, J. Chem. Phys. 121, 5754 (2004) open in new tab
  16. J.K.G. Watson, J. Mol. Spectrosc. 219, 326 (2003) open in new tab
  17. R. Dardouri, K. Issa, B. Oujia, F.X. Gadéa, Int. J. Quantum Chem. 112, 2724 (2012) open in new tab
  18. N. Mabrouk, H. Berriche, H. Ben Ouada, F.X. Gadea, J. Phys. Chem. A 114, 6657 (2010) open in new tab
  19. M. Korek, A.R. Allouche, K. Fakhreddine, A. Chaalan, Can. J. Phys. 78, 977 (2000) open in new tab
Verified by:
Gdańsk University of Technology

seen 103 times

Recommended for you

Meta Tags