The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester - Publication - Bridge of Knowledge

Search

The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester

Abstract

The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

download paper
downloaded 14 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF MOLECULAR STRUCTURE no. 1151, pages 218 - 222,
ISSN: 0022-2860
Language:
English
Publication year:
2018
Bibliographic description:
Siebert A., Cholewiński G., Garwolińska D., Olejnik A., Rachoń J., Chojnacki J.: The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester// JOURNAL OF MOLECULAR STRUCTURE. -Vol. 1151, (2018), s.218-222
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molstruc.2017.09.041
Bibliography: test
  1. R. Bentley, Mycophenolic Acid: a one hundred year odyssey from antibiotic to immunosuppressant, Chem. Rev. 100 (2000) 3801e3826. open in new tab
  2. G. Cholewinski, D. Iwaszkiewicz-Grzes, M. Prejs, A. Głowacka, K. Dzierzbicka, Synthesis of the inosine 5'-monophosphate dehydrogenase (IMPDH) in- hibitors, J. Enzyme Inhib. Med. Chem. 30 (2015) 550e563. open in new tab
  3. G. Cholewinski, M. Malachowska-Ugarte, K. Dzierzbicka, The chemistry of mycophenolic acid -synthesis and modifications towards desired biological activity, Curr. Med. Chem. 17 (2010) 1926e1941. open in new tab
  4. P.H. Nelson, S.F. Carr, B.H. Devens, E.M. Eugui, F. Franco, C. Gonzalez, R.C. Havley, D.G. Loughhead, D.J. Milan, E. Papp, J.W. Patterson, S. Rouhafza, E.B. Sjogren, D.B. Smith, R.A. Stephenson, F.X. Talamas, A.-N. Waltos, R.J. Weikert, J.C. Wu, StructureÀActivity relationships for inhibition of inosine monophosphate dehydrogenase by nuclear variants of mycophenolic acid, J. Med. Chem. 39 (1996) 4181e4196. open in new tab
  5. N. Yang, J. Wang, Z.-W. Wang, Q.-H. Wang, H.-G. Yang, X.-J. Wang, M.- S. Cheng, Computational insights into the inhibition of inosine 5 0 -mono- phosphate dehydrogenase by mycophenolic acid analogs: three-dimensional quantitative structureeactivity relationship and molecular docking studies, Chem. Biol. Drug Des. 79 (2012) 1063e1071. open in new tab
  6. G. Cholewinski, D. Iwaszkiewicz-Grzes, P. Trzonkowski, K. Dzierzbicka, Syn- thesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as potential immunosuppressive agents, J. Enzyme Inhib. Med. Chem. 31 (2016) 974e982. open in new tab
  7. M. Malachowska-Ugarte, G. Cholewinski, K. Dzierzbicka, P. Trzonkowski, Synthesis and biological activity of novel mycophenolic acid conjugates con- taining nitro-acridine/acridone derivatives, Eur. J. Med. Chem. 54 (2012) 197e201. open in new tab
  8. K.W. Pankiewicz, K.B. Lesiak-Watanabe, K.A. Watanabe, S.E. Patterson, H.N. Jayaram, J.A. Yalowitz, M.D. Miller, M. Seidman, A. Majumdar, G. Prehna, B.M. Goldstein, Novel mycophenolic adenine bis(phosphonate) analogues as potential differentiation agents against human leukemia, J. Med. Chem 45 (2002) 703e712. open in new tab
  9. L. Hedstrom, IMP dehydrogenase: structure, mechanism, and inhibition, Chem. Rev. 109 (2009) 2903e2928. open in new tab
  10. M.D. Sintchak, E. Nimmesgern, The structure of inosine 5'-monophosphate dehydrogenase and the design of novel inhibitors, Immunopharmacology 47 (2000) 163e184. open in new tab
  11. W.J. Watkins, J.M. Chen, A. Cho, L. Chong, N. Collins, M. Fardis, W. Huang, M. Hung, T. Kirschberg, W.A. Lee, X. Liu, W. Thomas, J. Xu, A. Zeynalzadegan, J. Zhang, Phosphonic acid-containing analogues of mycophenolic acid as in- hibitors of IMPDH, Bioorg. Med. Chem. Lett. 16 (2006) 3479e3483. open in new tab
  12. D. Iwaszkiewicz-Grzes, G. Cholewinski, A. Kot-Wasik, P. Trzonkowski, K. Dzierzbicka, Investigations on the immunosuppressive activity of de- rivatives of mycophenolic acid in immature dendritic cells, Int. Immuno- pharmacol. 44 (2017) 137e142. open in new tab
  13. D. Iwaszkiewicz-Grzes, G. Cholewinski, A. Kot-Wasik, P. Trzonkowski, K. Dzierzbicka, Synthesis and biological activity of mycophenolic acid-amino acid derivatives, Eur. J. Med. Chem. 69 (2013) 863e871. open in new tab
  14. K. Felczak, R. Vince, K.W. Pankiewicz, NAD-based inhibitors with anticancer potential, Bioorg. Med. Chem. Lett. 24 (2014) 332e336. open in new tab
  15. J.R. Dunetz, Y. Xiang, A. Baldwin, J. Ringling, General and Scalable Amide Bond formation with epimerization-prone substrates using T3P and pyridine, Org. Lett. 13 (2011) 5048e5051. open in new tab
  16. W. Harrison, H.M.M. Shearer, J. Trotter, Crystal structure of mycophenolic acid, J. Chem. Soc. Perkin Trans. 2 (1972) 1542e1544. open in new tab
  17. A. Covarrubias-Zuniga, N. Zuniga-Villarreal, A. Gonzalez-Lucas, J. Diaz-Domi- nguez, G. Espinosa-Perez, Crystal structure of mycophenolic acid: 6-(4- hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4- methyl-hex-4-enoic acid, Anal. Sci. 16 (2000) 783e784. open in new tab
  18. G. Rihs, C. Papageorgiou, S. Pfeffer, Sodium mycophenolate, Acta Crystallogr. C56 (2000) 432e433. open in new tab
  19. H.S. Yathirajan, B. Nagaraj, S.L. Gaonkar, R.S. Narasegowda, P. Nagaraja, M. Bolte, Mycophenolate mofetil, Acta Crystallogr. E60 (2004) o2223eo2224. open in new tab
  20. STOE &Cie GmbH, X-area 1.75, STOE &Cie GmbH, Darmstadt, Germany, 2015. open in new tab
  21. L.J. Farrugia, WinGX and ORTEP for windows: an update, J. Appl. Cryst. 45 (2012) 849e854. open in new tab
  22. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C 71 (2015) 3e8. open in new tab
  23. M. Frisch, et al., Gaussian 09, Gaussian, Inc., Pittsburgh, PA, 2009;
  24. GausView03 Program Package. (www.gaussian.com/g_prod/gv5.htm). open in new tab
  25. J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals, Angew. Chem. Int. Ed. 34 (1995) 1555e1573. open in new tab
  26. Fig. 5. The plot of relaxed Potential Energy Surface (PES) versus torsion angle for C5eC6eC7eC8 showing the energy barriers to rotation related to placing the alkyl chain above and below the isobenzofuran plane. The actual angle found in 3 equals 77.7(7) . Bonds defining the examined torsion angle are shown in black. open in new tab
Verified by:
Gdańsk University of Technology

seen 148 times

Recommended for you

Meta Tags