Didn't find any results in this catalog!
But we have some results in other catalogs.displaying 1000 best results Help
Search results for: NON-STANDARD DIFFERENCE METHODS
-
Compact 4 × 4 butler matrix with non‐standard phase differences for IoT applications
PublicationButler matrices represent a popular class of feeding networks for antenna arrays. Large dimensions and the lack of flexibility in terms of achievable output phase difference make conventional Butler structures of limited use for modern communication devices. In this work, a compact planar 4 × 4 matrix with non-standard relative phase shifts of –30º, 150º, –120º, and 60º has been proposed. The structure is designed to operate at...
-
The finite difference methods of computation of X-rays propagation through a system of many lenses
PublicationThe propagation of X-ray waves through an optical system consisting of many beryllium X-ray refrac- tive lenses is considered. In order to calculate the propagation of electromagnetic in the optical sys- tem, two differential equations are considered. First equation for an electric field of a monochromatic wave and the second equation derived for complex phase of the same electric The propagation of X-ray waves through an optical system...
-
Time Delay Estimation in Two-Phase Flow Investigation Using the γ-Ray Attenuation Technique.
PublicationTime delay estimation is an important research question having many applications in a range of technologies. Measurement of a two-phase flow in a pipeline or an open channel using radioisotopes is an example of such application. For instance, the determination of velocity of dispersed phase in that case is based on estimation of the time delay between two stochastic signals provided by scintillation probes. The proper analysis...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
Stability by linear approximation for time scale dynamical systems
PublicationWe study systems on time scales that are generalizations of classical differential or difference equations and appear in numerical methods. In this paper we consider linear systems and their small nonlinear perturbations. In terms of time scales and of eigenvalues of matrices we formulate conditions, sufficient for stability by linear approximation. For non-periodic time scales we use techniques of central upper Lyapunov exponents...
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
Comparative analysis of numerical with optical soliton solutions of stochastic Gross–Pitaevskii equation in dispersive media
PublicationThis article deals with the stochastic Gross–Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation...
-
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
PublicationThe paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations. We investigate weighted difference methods for these problems. A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems...
-
Explicit and implicit difefrence methods for quasilinear first order partial functional differential equations.
PublicationInitial boundary value problems of the Dirichlet type for quasilinear functional differential equations are considered. Explicit difference schemes of the Euler type and implicit difference methods are investigated. Suffcient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that assumptions on the regularity of given functions are the same for both classes...
-
Marek Zienkiewicz dr inż.
PeopleDoctor engineer Marek Hubert Zienkiewicz is a graduate of the Faculty of Geodesy, Spatial Engineering and Construction at the University of Warmia and Mazury in Olsztyn. During his engineering, master's and doctoral studies he developed his scientific interests under the supervision of representatives of the Olsztyn geodetic compensatory calculus school. In 2011, he obtained the title of Master of Science in Geodesy and Cartography,...