Filters
total: 6765
filtered: 1102
displaying 1000 best results Help
Search results for: CONCENTRATION-TIME CURVES
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #1.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103, run #2.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #8.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #8. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 1281 mA. Sample J51, run #3.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 1098 mA. Sample J51, experiment run #3. The current is extremely high for this type of sample to accelerate ageing processes.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #7.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #7. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,0 V at 420 mA. Sample 103, run #1.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,0 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #2.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #1.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #3.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #3. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 1281 mA. Sample J51, run #1.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 1098 mA. Sample J51, experiment run #1. The current is extremely high for this type of sample to accelerate ageing processes.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #7.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #7. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,9 V at 420 mA. Sample 103, run #3.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,9 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #3. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #6.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #6. The period of images is 30 minutes in order to observe slow temperature fluctuations.The images were taken...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #3.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #3. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,4 V at 420 mA. Sample 103, run #1.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,4 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #1. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #2.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #2. Voltage was increased to accelerate the ageing process.The images were taken with thermographic camera VigoCAM...
-
LDRAW based renders of LEGO bricks moving on a conveyor belt
Open Research DataThe set contains renders of 5237 LEGO bricks moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. For each brick starting position, alignment and color was selected (simulating the brick falling down on the conveyour belt) and than 10 images was created while the brick was moved across...
-
Hemocompatibility of nanocrystalline diamond layers
Open Research DataThe biocompatibility of the diamond films were investigated with whole human blood samples. Blood used in this study was drawn from 10 healthy human patients of different age, sex, and blood group. A 2 ml samples were collected into standard tubes with EDTA anticoagulation agent. Blood was used within 6 hours from the collection time. A reference blood...
-
Topographic AFM imaging of the leaf surface with magnification of details of its morphological structure
Open Research DataTopographic imaging of the leaf surface with magnification of details of its morphological structure. Measurements in semi-contact mode. NTEGRA Prima (NT-MDT) device. NSG 01 probe.
-
Detection of the acoustic interferences during AFM operation
Open Research DataAtomic force microscopy is a particularly complicated surface imaging technique due to the large number of factors that affect the quality of the resulting images. They are obviously difficult and sometimes even impossible to control at the same time. One of such factors may even be the seismological location of the building or the influence of mechanical...
-
Factors influencing the selection of the ideal employer
Open Research DataThis dataset contains the results of research that were carried out by the Wrocław University of Science and Technology in March and April 2016, using an anonymous "on-line" questionnaire. 1,320 people took part in the study entitled "My ideal employer" - students and doctoral students of all faculties of the university (including those fields of study...
-
ECG measurement in the bathtub - drl on the outside of the bathtub on one side- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl behind the back - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at buttocks, strengthening 2x smaller, drl at buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks, drl at the feet - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - one side of the bathtub is grounded, drl outside the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, sitting motionless - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the knees, signal amplification x2 - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks, drills at the feet, grounding the bathtub - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, placed on the back - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - sitting on the measuring electrodes, drl outside the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on the outside of the bathtub on both sides, measuring electrodes on the front and back of the bathtub- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in the water, measuring electrodes on the sides of the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on one side of the bath mass on the other - the person is moving- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl outside the bathtub on both sides- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in water, front and back measuring electrodes - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, bath simulation - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - sitting on measuring electrodes, drl in water - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl at the buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on one side of the bath, the mass of the system on the other- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - conversation during measurement, electrodes on the sides of the bathtub, drl in water - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in the bathtub, electrodes on the sides of the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl at the knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 64 mA. Sample 91. Image period: 5 sec.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 64 mA. Sample 91. Pictures were taken relatively fast, with period of 5 sec in order to examine the fast fluctuations of sample temperature during...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
XPS analysis of TBBO glass
Open Research DataGlasses and glass-ceramics with nominal composition 73 TeO2– 4BaO– 3Bi2O3–18SrF2-2RE2O3 (where RE = Eu, Dy) have been synthesized by conventional melt-quenching technique and subsequent heat treatment at 370 °C for 24 h in air atmosphere. Various Eu3+ to Dy3+ molar ratio have been applied to investigate luminescence properties in both glass and glass-ceramic...
-
ECG measurement in the bathtub - electrodes at the feet, bath simulation - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 120 mA. Sample 103. Image period: 0,5 sec.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 120 mA. Sample 103. Thermographic pictures were taken relatively fast, with period of 0,5 sec in order to examine the fast fluctuations of sample...
-
ECG measurement in the bathtub - buttocks electrodes, reinforcement 2x smaller, drl on knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...