Filters
total: 2469
filtered: 362
Search results for: pulsatile fluid flow
-
Low temperature electrical conductivity of the SrTi0.65Fe0.35O3-d pellet
Open Research DataThis dataset contains results of low temperature electrical conductivity measurements of dense SrTi0.65Fe0.35O3-d (STF35) pellet. DC electrical conductivity measurements of STF35 were performed by the Van der Pauw method between 400 °C and room temperature with 20 °C step. Studies were performed at Synthetic Air flow under humidified (~4 vol%) gas...
-
Low temperature electrical conductivity of the SrTi0.30Fe0.70O3-d pellet
Open Research DataThis dataset contains results of low temperature electrical conductivity measurements of dense SrTi0.30Fe0.70O3-d (STF70) pellet. DC electrical conductivity measurements of STF70 were performed by the Van der Pauw method between 400 °C and room temperature with 20 °C step. Studies were performed at Synthetic Air flow under humidified (~4 vol%) gas...
-
Low temperature electrical conductivity of the SrTi0.50Fe0.50O3-d pellet
Open Research DataThis dataset contains results of low temperature electrical conductivity measurements of dense SrTi0.50Fe0.50O3-d (STF50) pellet. DC electrical conductivity measurements of STF50 were performed by the Van der Pauw method between 400 °C and room temperature with 20 °C step. Studies were performed at Synthetic Air flow under humidified (~4 vol%) gas...
-
Low temperature electrical conductivity of the SrTi0.10Fe0.90O3-d pellet
Open Research DataThis dataset contains results of low temperature electrical conductivity measurements of dense SrTi0.10Fe0.90O3-d (STF90) pellet. DC electrical conductivity measurements of STF90 were performed by the Van der Pauw method between 400 °C and room temperature with 20 °C step. Studies were performed at Synthetic Air flow under humidified (~4 vol%) gas...
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pCC90 cells in polystyrene in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pACYCpBAD cells in glass in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pCC90 cells in glass in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Study of the effect of Dr fimbria presence on the accumulation of recombinant Escherichia coli strain: AAEC191A/pACYCpBAD cells in polystyrene in a dynamic system
Open Research DataThe process of surface colonization, known as biofilm development, begins with bacterial attachment and involves various physicochemical and molecular interactions. Adhesion to neutral surfaces typically involves non-specific interactions, while adhesion to biological surfaces is governed by specific ligand-receptor interactions. In the experiment,...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulations of flows in the coastal zone of the Baltic Sea
Open Research DataThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...
-
Methane (CH4) calibration set of FTIR spectra
Open Research DataThe calibration spectra for CH4 concentration calibration were supplied with this dataset
-
Carbon (II) oxide (CO) calibration set of FTIR spectra
Open Research DataThe calibration spectra for CO concentration calibration were supplied with this dataset
-
Carbon dioxide (CO2) calibration set of FTIR spectra
Open Research DataThe calibration spectra for CO2 concentration calibration were supplied with this dataset
-
The TPR reduction profile of MCO powder
Open Research DataThe dataset includes the TPR reduction profiles of MnCo2O4 (MCO) commercial powder. The dataset includes a cycle of reduction under H2/Ar mixture from 100C to 900C. Gas flow:40ml/min and temperature ramp: 10deg/min. Degassed at 200C in He for 1 h.
-
FTIR spectra of gas mixtures from the process of biogas dry reforming using Al2O3/5%Cu catalyst
Open Research DataThe dataset contains the FTIR spectra collected during the catalytic measurements of dry reforming of biogas (60/40 CH4-CO2) using AlOOH/1%Cu nanocatalyst. The specatra were collected every 1 minute from 800C to 500C. Reagent flow was set to 20ml/min.
-
FTIR spectra of gas mixtures from the process of biogas dry reforming using CeO2/5%Cu catalyst
Open Research DataThe dataset contains the FTIR spectra collected during the catalytic measurements of dry reforming of biogas (60/40 CH4-CO2) using CeO2/5%Cu nanocatalyst. The specatra were collected every 1 minute from 800C to 500C. Reagent flow was set to 20ml/min.
-
FTIR spectra of gas mixtures from the process of biogas dry reforming using Al2O3/5%Cu catalyst
Open Research DataThe dataset contains the FTIR spectra collected during the catalytic measurements of dry reforming of biogas (60/40 CH4-CO2) using Al2O3 (TMDAR)/5%Cu nanocatalyst. The specatra were collected every 1 minute from 800C to 500C. Reagent flow was set to 20ml/min.
-
TiO2-TG analyses -OH groups
Open Research DataTG analyses of TiO2 were performed under nitrogen flow to monitor desorption of hydroxyl groups. Physisorbed weak-bonded hydroxyl groups were desorbed totally at around 120oC, whereas chemisorbed ones at around 500oC. The mass loss at these temperatures was used as concentration of hydroxyl groups on TiO2 surface. The amount of analysed TiO2 was 10...
-
Electrical conductivity of the Sr0.86Ti0.65Fe0.35O3-d pellet at different oxygen partial pressures
Open Research DataThis dataset contains results electrical conductivity measurements of dense Sr0.86Ti0.65Fe0.35O3-d (STF35) pellet. DC electrical conductivity measurements of STF35 were performed by the Van der Pauw method. Studies were performed at different oxygen partial pressures (20%, 1% and 0.1%) under humidified (~4 vol%) gas flow rate of 50 ml min -1.
-
Series resistance (at 800 °C - 500 °C) of the SrTi0.50Fe0.50O3 porous oxygen electrodes sintered at different temperatures
Open Research DataIn this dataset are presented results of the ohmic contribution of differently sintered Sr0Ti0.50Fe0.50O3 porous oxygen electrodes in symetrical cell. Applied sintering temperatures were 900 °C, 950 °C and 1000 °C. The measurement temperature range was between 800 °C and 500 °C with synthetic ari flow (21% O2, 40 ml min-1). Results converted to electrode...
-
Series resistance (at 800 °C - 500 °C) of the SrTi0.30Fe0.70O3 porous oxygen electrodes sintered at different temperatures
Open Research DataIn this dataset are presented results of the ohmic contribution of differently sintered Sr0Ti0.30Fe0.70O3 porous oxygen electrodes in symetrical cell. Applied sintering temperatures were 900 °C, 950 °C and 1000 °C. The measurement temperature range was between 800 °C and 500 °C with synthetic ari flow (21% O2, 40 ml min-1). Results converted to electrode...