Search results for: FLUORESCENCE PROBE
-
N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction
PublicationA precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine–formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV–vis spectra, and N2 adsorption–desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence...
-
Magnetically sensitive fiber probe with nitrogen-vacancy center nanodiamonds integrated in a suspended core
PublicationEfficient collection of photoluminescence arising from spin dynamics of nitrogen vacancy (NV) centers in diamond is important for practical applications involving precise magnetic field or temperature mapping. These goals may be realized by the integration of nanodiamond particles with optical fibers and volumetric doping of the particles alongside the fiber core. That approach combines the advantages of robust axial fixation of...
-
Effects Induced by the Temperature and Chemical Environment on the Fluorescence of Water-Soluble Gold Nanoparticles Functionalized with a Perylene-Derivative Dye
PublicationWe developed a fluorescent molecular probe based on gold nanoparticles functionalized with N,N′-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dihydrochloride, and these probes exhibit potential for applications in microscopic thermometry. The intensity of fluorescence was affected by changes in temperature. Chemical environments, such as different buffers with the same pH, also resulted in different fluorescence...
-
Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity
PublicationHerein, the synthesis and application of functionalized quantum dot-based protease probes is described. Such probes are composed of nontoxic ZnO nanocrystals decorated by amino groups followed by linker and labeled peptide attachment. Spherical NH2-terminated ZnO quantum dots (QDs) with the average size ranging from 4 to 8 nm and strong emission centered at 530 nm were prepared using the sol−gel method. The fluorescence of ZnO...
-
Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-edge Absorption Spectroscopy
PublicationThe evolution of the solid electrolyte interphase (SEI) during the first Li uptake in advanced Li-ion electrodes is studied by X-ray absorption spectroscopy (XAS). The As atoms present in the electrolyte solution were used as a local probe for monitoring the SEI growth on different electrodes. High-quality As K-edge spectra were collected in fluorescence mode for a set of graphite and carbon-coated ZnFe2O4 electrodes. XAS measurements...
-
Can sodium 1-alkylsulfonates participate in the sodium dodecyl sulfate micelle formation?
PublicationThe aggregation behavior of sodium dodecyl sulfate (SDS) was studied in an aqueous solution in the presence of increasing concentrations of selected sodium 1-alkylsulfonates, namely sodium 1-octanesulfonate, sodium 1-decanesulfonate, and sodium 1-dodecanesufonate. The critical micelle concentration (CMC) of SDS was determined by conductivity and fluorescence intensity measurements. The steady-state fluorescence quenching experiments...
-
Molecularly targeted nanoparticles: an emerging tool for evaluation of expression of the receptor for advanced glycation end products in a murine model of peripheral artery disease
PublicationAbstract Background: Molecular imaging with molecularly targeted probes is a powerful tool for studying the spatio-temporal interactions between complex biological processes. The pivotal role of the receptor for advanced glycation end products (RAGE) in numerous pathological processes, aroused the demand for RAGE targeted imaging in various diseases. In the study, we evaluated the use of a diagnostic imaging agent for RAGE quantification...
-
Real-Time PCR: molecular technique of many applications
PublicationReal-Time PCR is a sensitive DNA amplification technique initially applied in genetics and molecular biology. It enables in vivo copying of the selected DNA fragment (flanked by two primers) by the thermostable polymerase (in the presence of magnesium ions and deoxynucleotide triphosphates) and simultaneous measurement of the fluorescence. For one or more specific sequences in a DNA sample, real-time PCR enables both detection...
-
Does the chemical modification of Nystatin A1 affect the drug's ability to overcome the multidrug resistance of fungi?
PublicationAlthough the contemporary medicine keeps moving forward, disseminated infections caused by fungal pathogens are an emerging challenge. The dramatic rise of fungal diseases, especially the most life-threatening systemic mycoses is associated with a permanently growing number of immunodeficient patients. Undoubted difficulties in the treatment of fungal infections are caused by lack of highly effective and selective antifungal drugs,...