Search results for: COMPUTATIONAL OPTIMIZATION
-
BIOINFO Computational Optimization
Journals -
EURO Journal on Computational Optimization
Journals -
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
Journals -
Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress
PublicationA brief review of some recent variable-fidelity aerodynamic shape optimization methods is presented.We discuss three techniques that—by exploiting information embedded in low-fidelity computationalfluid dynamics (CFD) models—are able to yield a satisfactory design at a low computational cost, usu-ally corresponding to a few evaluations of the original, high-fidelity CFD model to be optimized. Thespecific techniques considered here...
-
Computational Bar Size Optimization of Single Layer Dome Structures Considering Axial Stress and Shape Disturbance
PublicationA computational method is proposed in this paper to minimize the material usage in the construction of modern spatial frame structures by prestressing a minimal number of members. The computational optimization is conducted in two steps. Firstly, a numerical model of a single-layer dome structure is used to minimize the cross-sectional area through several iterations. Different assumed ratios (r) ranging from 0.95 to 0.75 are multiplied...
-
Optimization of hydrodynamic vortex separator for removal of sand particles from storm water by computational fluid dynamics
PublicationStorm water treatment has been gradually acknowledged for the removal of pollutants from urban areas using the hydro cyclone separation technique. The separation efficiency of the hydrodynamic vortex separator (HDVS) is a complex phenomenon. With the aim enhance the separation potency of HDVS for storm runoff to get rid of sand particles, the HDVS with different structural configurations was studied by computational fluid dynamics....
-
Model Management for Low-Computational-Budget Simulation-Based Optimization of Antenna Structures Using Nature-Inspired Algorithms
PublicationThe primary objective of this study is investigation of the possibilities of accelerating nature-inspired optimization of antenna structures using multi-fidelity EM simulation models. The primary methodology developed to achieve acceleration is a model management scheme which the level of EM simulation fidelity using two criteria: the convergence status of the optimization algorithm, and relative quality of the individual designs...
-
Workshop on Computational Optimization [WCO-IMCSIT]
Conferences -
Proximal primal–dual best approximation algorithm with memory
PublicationWe propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous...
-
Computational intelligence methods in production management
PublicationThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
Variable-fidelity shape optimization of dual-rotor wind turbines
PublicationPurpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Solving highly-dimensional multi-objective optimization problems by means of genetic gender
PublicationPaper presents a computational optimization study using a genetic gender approach for solving multi-objective optimization problems of detection observers. In this methodology the information about an individual gender of all the considered solutions is applied for the purpose of making distinction between different groups of objectives. This information is drawn out of the fitness of individuals and applied during a current parental...
-
Solving highly-dimensional multi-objective optimization problems by means of genetic gender
PublicationPaper presents a computational optimization study using a genetic gender approach for solving multi-objective optimization problems of detection observers. In this methodology the information about an individual gender of all the considered solutions is applied for the purpose of making distinction between different groups of objectives. This information is drawn out of the fitness of individuals and applied during a current parental...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
Optimization issues in distributed computing systems design
PublicationIn recent years, we observe a growing interest focused on distributed computing systems. Both industry and academia require increasing computational power to process and analyze large amount of data, including significant areas like analysis of medical data, earthquake, or weather forecast. Since distributed computing systems – similar to computer networks – are vulnerable to failures, survivability mechanisms are indispensable...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Trawl-Door Shape Optimization with 3D CFD Models and Local Surrogates
PublicationDesign and optimization of trawl-doors are key factors in minimizing the fuel consumption of fishing vessels. This paper discusses optimization of the trawl-door shapes using high-fidelity 3D computational fluid dynamic (CFD) models. The accurate 3D CFD models are computationally expensive and, therefore, the direct use of traditional optimization algorithms, which often require a large number of evaluations, may be prohibitive....
-
Size Reduction of Microwave Couplers by EM-Driven Optimization
PublicationThis work addresses simulation-driven design optimization of compact microwave couplers that explicitly aims at circuit footprint area reduction. The penalty function approach allows us to minimize the area of the circuit while ensuring a proper power division between the output ports and providing a sufficient bandwidth with respect to return loss and isolation around the operating frequency. Computational cost of the optimization...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublicationHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Analysis of muscles behaviour. Part II. The computational model of muscles group acting on the elbow joint
PublicationThe purpose of this paper is to present the computational model of muscles' group describing the movements of flexion/extension at the elbow joint in the sagittal plane of the body when the forearm is being kept in the fixed state of supination/pronation. The method ofevaluating the muscle forces is discussed in detail. This method is the basis for the quantitative and qualitative verification of the proposed computational model...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublicationAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublicationDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublicationElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Multi-Objective Design Optimization of Compact Quasi-Isotropic Dielectric Resonator Antenna
PublicationMulti-objective optimization of a quasi-isotropic dielectric resonator antenna (DRA) is presented. Utilization of variable-fidelity electromagnetic (EM) DRA models, response surface approximations, and response correction techniques, allows us to obtain—at a low computational cost—a set of alternative antenna designs representing the best possible trade-offs between three conflicting objectives: antenna size, its reflection response,...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Low-cost multi-objective optimization of antennas using Pareto front exploration and response features
PublicationIn the paper, a procedure for low-cost multi-objective optimization of antenna structures is presented. Our approach is based on exploration of the Pareto front representing the best possible trade-offs between conflicting objectives, here, the structure size and its electrical performance. Starting from the design representing the best in-band reflection level, subsequent Pareto-optimal designs are identified through local constrained...
-
Aerodynamic Shape Optimization for Delaying Dynamic Stall of Airfoils by Regression Kriging
PublicationThe phenomenon of dynamic stall produce adverse aerodynamic loading which can adversely affect the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides an effective approach for delaying and mitigating dynamic stall characteristics without the addition of auxiliary system. ASO, however, requires multiple evaluations time-consuming computational fluid dynamics models. Metamodel-based...
-
Parametric optimization of sandwich composite footbridge with U-shaped cross-section
PublicationParametric optimization of sandwich composite footbridge was presented in the paper. Composite footbridge has 14,5 m long and has U-shaped cross-section with inner dimensions 2,6 × 1,3 m. The sandwich structure in made from GFRP laminate as a faces and PET foam as a core. The aim of analysis was to minimize the mass of the new footbridge that can lead to minimize the cost of structure. After optimization was conducted, the new...
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublicationPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Michał Małafiejski dr hab. inż.
PeopleMichał Małafiejski was born in 1975. He received the M.Sc. in computer science (in 1999). He received the Ph.D. in computer science in 2002 and habilitation in the same area in 2014. He works as associate professor in Department of Algorithms and Modelling of Systems. He is the author or coauthor of many papers related to theoretrical computer science. Main area of his research is the design of efficient algorithms and the analysis...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Expedited simulation-driven design optimization of UWB antennas by means of response features
PublicationIn this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...