Filters
total: 9
Search results for: GREEN NANOCOMPOSITES
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublicationFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
Chitin nanowhiskers from shrimp shell waste as green filler in acrylonitrile-butadiene rubber: Processing and performance properties
PublicationIn this work, chitin nanowhiskers with high crystallinity index were obtained from shrimp shells waste using acid hydrolysis method and then comprehensively characterized. Subsequently, the impact of chitin nanowhisker content on processing and performance of acrylonitrile-butadiene rubber based nanocomposites was evaluated. The results showed that the addition of chitin nanowhiskers increased tensile strength and tear strength...
-
Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers
PublicationGreen thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching;...
-
Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber
PublicationIn the present work, we used the steam explosion method for the isolation of cellulose nanofiber (CNF) from Cuscuta reflexa, a parasitic plant commonly seen in Kerala and we evaluated its reinforcing efficiency in natural rubber (NR). Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA) techniques...
-
Composite as a Material of the Future in the Era of Green Deal Implementation Strategies
PublicationComposite materials have become synonymous with modernity, desired in nearly every aspect of our daily lives, from simple everyday objects to sanitary facilities, pipelines, the construction of modern sewer networks, their renovation, water supply, and storage reservoirs, to complex structures—automotive, planes, and space science. Composites have seen a considerable rise in attention owing to their characteristics, durability,...
-
Powering the Future by Iron Sulfide Type Material (FexSy) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review
PublicationWater electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one...
-
Nanostructure of the laser-modified transition metal nanocomposites for water splitting
PublicationAlthough hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste...
-
Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority
PublicationPolysulfone (PSf) membranes are privileged for water and wastewater treatment, but because of their hydrophobic nature, they suffer from fouling, which lowers their performance and lifetime. In this work, g-C3N4 and g-C3N4/ZnO nanomaterials were synthesized via a hydrothermal method to modify the PSf membrane for effective dye separation and reduction of organic fouling. Since g-C3N4/ZnO possesses –OH and –NH reactive groups, g-C3N4/ZnO/PSf...
-
Grzegorz Boczkaj dr hab. inż.
People