Search results for: apatite
-
Design and characterization of apatite La9.8Si5.7Mg0.3O26±δ-based micro-tubular solid oxide fuel cells
PublicationIn this study, electrolyte-supported (Cell A) and anode-supported (Cell B) micro-tubular solid oxide fuel cells (SOFCs) based on the La9.8Si5.7Mg0.3O26±δ (LSMO) electrolyte is built through an extrusion and dip-coating processes. The formulations and process conditions for these cells are established and optimized. Both cell configurations show no visible delamination or cracking, and reaction zones and inter-diffusion of any species...
-
Apatite-coated Ag/AgBr/TiO2 nanocomposites: Insights into the antimicrobial mechanism in the dark and under visible-light irradiation
Publication -
The effect of Sr and Mg substitutions on structure, mechanical properties and solubility of fluorapatite ceramics for biomedical applications
PublicationIonic substitutions play important role in the modifications of biological apatites. Recently, attention has been focused on the co-doping effects on the functional properties of apatite-based biomaterials. In this research work, the dense samples of fluorapatites, Ca10(PO4)6F2 and Ca8MgSr(PO4)6F2, were produced after sintering at 1250 °C for 6 h in air. Structural characterization carried out with XRD, IR, Raman and SEM, confirmed...
-
Effects of Na+, K+ and B3+ Substitutions on the Electrical Properties of La10Si6O27 Ceramics
PublicationDoping of Na and K at La sites and of B at Si site in La10Si6O27 with oxyapatite structure and fabrication of their ceramics were made by solid-state reaction method. It was found that partial substitution of Na+ and K+ on La sites decreased the sinterability of the La10Si6O27 based ceramics, whereas partial substitution of B3+ on Si site imporved the sinterability. Na+ and K+ substitutions in La10-xNaxSi6O27-x and La10-xKxSi6O27-x...
-
Dissolution of Nb-doped hydroxyapatite prepared via low-temperature mechanochemical method: Spectroscopy studies
PublicationCalcium phosphate glass ceramics with nominal hydroxyapatite stoichiometry doped with niobium were synthesized using simple as well as low-temperature mechanochemical method and then in the form of compressed pellet were submitted to the static dissolution process in distilled water for one month. The results of structural analysis, performed mainly on the base of spectroscopic methods such as: infrared absorption spectroscopy,...
-
Effects of Na+, K+ and B3+ Substitutions on the Electrical Properties of La10Si6O27 Ceramics
PublicationDoping of Na and K at La sites and of B at Si site in La10Si6O27 with oxyapatite structure and fabrication of their ceramics were made by the solid-state reaction method. It was found that partial substitution of Na+ and K+ on La sites decreased the sinterability of the La10Si6O27 based ceramics, whereas partial substitution of B3+ on the Si site improved the sinterability. Na+ and K+ substitutions in La10−xNaxSi6O27−x and La10−xKxSi6O27−x...
-
Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy
PublicationThe purpose of the research was to establish the influence of the solution composition and the electrophoretic deposition voltage on the coating homogeneity and thickness, nanohardness, adhesion, corrosion resistance and wettability. The Ti13Zr13Nb alloy was coated by the electrophoretic technique with hydroxyapatite in a solution containing 0.1, 0.2 or 0.5 g nanoHAp in 100 mL of suspension and at voltage 15, 30 or 50 V. The scanning...
-
Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy
PublicationTitanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition...
-
Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy
PublicationLoad-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties...