Search results for: backbone chromatic number - Bridge of Knowledge

Search

Search results for: backbone chromatic number

Search results for: backbone chromatic number

  • T-colorings, divisibility and circular chromatic number

    Let T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 ∈ T, and G be a graph. In the paper we study relations between the T-edge spans espT (G) and espd⊙T (G), where d is a positive integer and d ⊙ T = {0 ≤ t ≤ d (max T + 1): d |t ⇒ t/d ∈ T} . We show that espd⊙T (G) = d espT (G) − r, where r, 0 ≤ r ≤ d − 1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that espd⊙{0} (G) =...

    Full text available to download

  • The Backbone Coloring Problem for Small Graphs

    In this paper we investigate the values of the backbone chromatic number, derived from a mathematical model for the problem of minimization of bandwidth in radio networks, for small connected graphs and connected backbones (up to 7 vertices). We study the relationship of this parameter with the structure of the graph and compare the results with the solutions obtained using the classical graph coloring algorithms (LF, IS), modified...

    Full text to download in external service

  • Optimal backbone coloring of split graphs with matching backbones

    For a graph G with a given subgraph H, the backbone coloring is defined as the mapping c: V(G) -> N+ such that |c(u)-c(v)| >= 2 for each edge uv \in E(H) and |c(u)-c(v)| >= 1 for each edge uv \in E(G). The backbone chromatic number BBC(G;H) is the smallest integer k such that there exists a backbone coloring with max c(V(G)) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.

    Full text available to download

  • The Backbone Coloring Problem for Bipartite Backbones

    Let G be a simple graph, H be its spanning subgraph and λ≥2 be an integer. By a λ -backbone coloring of G with backbone H we mean any function c that assigns positive integers to vertices of G in such a way that |c(u)−c(v)|≥1 for each edge uv∈E(G) and |c(u)−c(v)|≥λ for each edge uv∈E(H) . The λ -backbone chromatic number BBCλ(G,H) is the smallest integer k such that there exists a λ -backbone coloring c of G with backbone H satisfying...

    Full text to download in external service

  • The computational complexity of the backbone coloring problem for planar graphs with connected backbones

    In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance: A simple planar graph GG, its connected spanning subgraph (backbone) HH. Question: Is there a λ-backbone coloring c of G with backbone H such that maxc(V(G))≤k? is either NP-complete or polynomially...

    Full text available to download

  • Total chromatic sum for trees

    Publication

    - Year 2021

    The total chromatic sum of a graph is the minimum sum of colors (natural numbers) taken over all proper colorings of vertices and edges of a graph. We provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.

    Full text to download in external service

  • Infinite chromatic games

    In the paper we introduce a new variant of the graph coloring game and a new graph parameter being the result of the new game. We study their properties and get some lower and upper bounds, exact values for complete multipartite graphs and optimal, often polynomial-time strategies for both players provided that the game is played on a graph with an odd number of vertices. At the end we show that both games, the new and the classic...

    Full text available to download

  • The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones

    Given a graph G, a spanning subgraph H of G and an integer λ>=2, a λ-backbone coloring of G with backbone H is a vertex coloring of G using colors 1, 2, ..., in which the color difference between vertices adjacent in H is greater than or equal to lambda. The backbone coloring problem is to find such a coloring with maximum color that does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree...

    Full text to download in external service

  • A 27/26-approximation algorithm for the chromatic sum coloring of bipartitegraphs

    We consider the CHROMATIC SUM PROBLEM on bipartite graphs which appears to be much harder than the classical CHROMATIC NUMBER PROBLEM. We prove that the CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with Delta less than or equal to 5, but polynomial on bipartite graphs with Delta less than or equal to 3, for which we construct an O(n(2))-time algorithm. Hence, we tighten the borderline of intractability for this...

  • 2-Coloring number revisited

    2-Coloring number is a parameter, which is often used in the literature to bound the game chromatic number and other related parameters. However, this parameter has not been precisely studied before. In this paper we aim to fill this gap. In particular we show that the approximation of the game chromatic number by the 2-coloring number can be very poor for many graphs. Additionally we prove that the 2-coloring number may grow...

    Full text available to download

  • Relations between the domination parameters and the chromatic index of a graph

    In this paper we show bounds for the sum and the product of the domination parameters and the chromatic index of a graph. We alsopresent some families of graphs for which these bounds are achieved.

    Full text available to download

  • Isolation and some properties of collagen from the backbone of Baltic cod(Gadus morhua)

    Publication

    - FOOD HYDROCOLLOIDS - Year 2010

    Ossein from Baltic cod backbone was obtained after extraction of non-collagenous protein with 0.1 M NaOH solution and demineralization with 1.0 M HCl solution. The extractions were performed at 4 C for24, 48 and 72 h using a solid/solution ratio from 1:4 to 1:8 (w/v). After 48 h of extraction in 0.5 M acetic acid only about 25% of collagen was dissolved. After 48 h of extraction at optimal concentration of pepsin(4 mg/g ossein)...

    Full text to download in external service

  • Isolation Number versus Domination Number of Trees

    Publication
    • M. Lemańska
    • M. J. Souto-Salorio
    • A. Dapena
    • F. Vazquez-Araujo

    - Mathematics - Year 2021

    If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....

    Full text available to download

  • Chromatic scheduling in a cyclic open shop

    Publication

    - Year 2005

    Praca jest poświęcona złożoności obliczeniowej problemu cyklicznego szeregowania w systemie otwartym. Autorzy analizując wykazują, że problem jest NP-trudny dla 3 procesorów i konstruują algorytm dokładny dla przypadku dwóch procesorów.Ponadto analizowany jest zwarty wariant cyklicznego systemu otwartego. W tym przypadku autorzy pokazują, że już szeregowanie na dwóch procesorach prowadzi do problemu NP-trudnego.

  • On trees with double domination number equal to total domination number plus one

    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text to download in external service

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Full text to download in external service

  • Chromatic cost coloring of weighted bipartite graphs

    Given a graph G and a sequence of color costs C, the Cost Coloring optimization problem consists in finding a coloring of G with the smallest total cost with respect to C. We present an analysis of this problem with respect to weighted bipartite graphs. We specify for which finite sequences of color costs the problem is NP-hard and we present an exact polynomial algorithm for the other finite sequences. These results are then extended...

    Full text to download in external service

  • Bondage number of grid graphs

    Publication

    The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.

    Full text available to download

  • Bounds on isolated scattering number

    Publication

    The isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.

    Full text to download in external service

  • Bounds on isolated scattering number

    Publication

    - Year 2021

    The isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.

    Full text to download in external service