Filters
total: 37
Search results for: diatomic molecules
-
Annihilation rates of low-energy positron scattering from simple diatomic molecules
PublicationWe discuss the calculations of Zeff coefficients for a series of diatomic molecules over the range of energies below the positronium formation. During the development of a general code for polyatomic, nonlinear molecules colliding with positrons, it was discovered that the earlier one, employed only for diatomic molecules, had an error. The error is corrected and the corrected results are presented here. We also discuss a way of...
-
Potential Energy Curves of Diatomic Alkali Molecules Datasets
PublicationThe datasets described in this article contain potential energy curves for several diatomic systems. The data was obtained via high-performance computing using MOLPRO, a system of ab initio programs for advanced molecular electronic structure calculations. The datasets allow to model bond lengths, energy levels, spectra and time-evolution of molecular dimers for which the data are presented.
-
Roadmap on dynamics of molecules and clusters in the gas phase
PublicationThis roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty orders of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity...
-
Superexcited states in the vacuum-ultraviolet photofragmentation of isoxazole molecules
PublicationThe photofragmentation of isoxazole molecules producing excited atomic and molecular fragments has been investigated over the energy range 16-50 eV, using photon-induced fluorescence spectroscopy. The following fragments have been identified by their fluorescence: the excited hydrogen atoms H(n), n = 3-7 and the diatomic CH(A2Δ, B2Σ−), CN(B2Σ+) and C2(d3Πg) fragments. The diatomic fragments are vibrationally and highly rotationally...
-
Electron impact fragmentation of pyrrole molecules studied by fluorescence emission spectroscopy
PublicationThe fluorescence emission spectroscopy using electron impact excitation technique was employed to study fragmentation processes of the gas phase pyrrole molecules. The following excited fragmentation species were observed by detection of their fluorescence decay: the atomic hydrogen H(n), n = 4-7 and the diatomic CH(A2Δ), CN(B2Σ+), NH(A3Π) and C2(d3Πg) fragments. These atomic and molecular products differ from those previously...
-
Charge transfer and formation of complexes in the He+ collisions with the furan molecules
PublicationCharge transfer and formation of the collision complexes have been studied experimentally in fragmentation of the furan molecules in collisions with He+ cations. The excited atomic and diatomic fragments of furan have been identified using collision-induced luminescence spectroscopy. Charge transfer ionization of the furan molecules has been observed in production of helium atoms in the excited 1s4d 1D2, 3D1,2,3 states. The fragmentation...
-
Fragmentation of Tetrahydrofuran Molecules by H+, C+, and O+ Collisions at the Incident Energy Range of 25–1000 eV
PublicationWe have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H+, C+, and O+ cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4–9, carbon atoms in the 2p3s 1P1, 2p4p 1D2, and 2p4p 3P states and vibrationally...
-
Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules
PublicationThe ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H+, H2+, He+, He2+, and...
-
Spontaneous electron emission vs dissociation in internally hot silver dimer anions
PublicationReferring to a recent experiment, we theoretically study the process of a two-channel decay of the diatomic silver anion (Ag2-), namely the spontaneous electron ejection giving Ag2 + e- and the dissociation leading to Ag- + Ag. The ground state potential energy curves of the silver molecules of diatomic neutral and negative ion were calculated using proper pseudo-potentials and atomic basis sets. We also estimated the non-adiabatic...
-
Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy
PublicationPhotofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region, producing excited atomic and molecular fragments, has been studied over the energy range 14-68 eV using photon-induced fluorescence spectroscopy. Excited hydrogen atoms H(n), n = 3-11, have been detected by observation of the Hα to Hı lines of the Balmer series. The diatomic CH(A2Δ), CH(B2Σ-) and C2(d3Πg) fragments, which are excited to low vibrational...
-
Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50–1000 eV
PublicationInvestigations of the ion-molecule reactions provide insight into many fields ranging from the stellar wind interaction with interstellar media, up to medicine and industrial applications. Besides the applications, the understanding of these processes is itself a problem of fundamental importance. Thus, interactions of protons with the gas-phase furan molecules have been investigated for the first time in the energy range of 50–1000...
-
The rovibrational energy levels of the diatomic silver anion and neutral silver dimer
Open Research DataThe process of a two-channel decay of the diatomic silver anion (Ag2-), namely the spontaneous electron ejection giving Ag2 + e- and the dissociation leading to Ag- + Ag is theoretically studied. The ground state potential energy curves (PECs) of the neutral silver dimer and anionic silver diatomic molecule are calculated using the single reference...
-
Optical Spectroscopic Studies of Tetrahydrofuran Fragmentation Induced by Collisions with Dihydrogen Cations
PublicationCollisions of dihydrogen cations with tetrahydrofuran molecules have been studied. Luminescence spectra and the emission functions of the excited products at projectile energies ranging from 8 to 1000 eV have been measured using collision-induced emission spectroscopy. The recorded spectra are dominated by the atomic lines of the hydrogen Balmer series, whose intensities decrease more quickly than derived by the quantum-theoretical...
-
The spontaneous electron emission and rotational predissociation lifetimes of the diatomic silver anion
Open Research DataThe process of a two-channel decay of the diatomic silver anion (Ag2-), namely the spontaneous electron ejection giving Ag2 + e- and the dissociation leading to Ag- + Ag is theoretically studied. The ground state potential energy curves (PECs) of the neutral silver dimer and anionic silver diatomic molecule are calculated using the single reference...
-
Optimization of the femtosecond laser impulse for excitation and the spin-orbit-mediated dissociation in the NaRb molecule
Open Research DataHigh accuracy ab initio potential energy curves (1tSigma+, 2sSigma+, 1tPi), electronic transition dipole moment function (1tSigma+ - 1tPi), and spin-orbit coupling (2sSigma+ - 1tPi) have been calculated for the NaRb molecule. The time-dependent excitation and dissociation processes in the polar alkali diatomic NaRb molecule and the quantum properties...
-
Electronic transition dipole moment functions of the first singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma gerade plus (1sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first triplet Sigma ungerade plus (1tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Delta gerade and first triplet Delta ungerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Delta gerade (1sDg) and first triplet Delta ungerade (1tDu) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the second triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second triplet Sigma ungerade plus (2tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the second singlet Sigma ungerade plus and second triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma ungerade plus (2sSu+) and second triplet Sigma gerade plus (2tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the third singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma gerade plus (3sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Sigma ungerade plus and first triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma ungerade plus (1sSu+) and first triplet Sigma gerade plus (1tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the third triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third triplet Sigma ungerade plus (3tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fourth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth triplet Sigma ungerade plus (4tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fourth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth singlet Sigma gerade plus (4sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Pi gerade and first triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Pi gerade (1sPg) and first triplet Pi gerade (1tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the second singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma gerade plus (2sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fifth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth singlet Sigma gerade plus (5sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the third singlet Sigma ungerade plus and third triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma ungerade plus (3sSu+) and third triplet Sigma gerade plus (3tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the second singlet Pi gerade and second triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Pi gerade (2sPg) and second triplet Pi gerade (2tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the fifth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth triplet Sigma ungerade plus (5tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Possible schemes of photoassociation processes in the KLi molecule with newly calculated potential energy curves
PublicationWe present four promising schemes for photoassociative formation of KLi molecule in its ground electronic state. Analysis is based on newly calculated adiabatic potentials supported by transition dipole moments and Franck-Condon factors.
-
Born–Oppenheimer potential energy curves of NaK from the optimised atomic basis sets
PublicationThe article presents adiabatic potential energy curves of the ground and excited electronic states for the diatomic NaK molecule. The calculations were made using the ab initio computational methods to include electron correlation. The studied molecule was calculated as the effective two-electron problem, in which only the valence electrons of the molecule are explicitly taken into account. The remaining electrons with atomic nuclei...
-
Adiabatic potential energy curves of the KRb molecule
Open Research DataAdiabatic potential energy curves (APEC) of the singlet (s) and triplet (t) Sigma+, Sigma-, Pi, and Delta electronic states have been calculated for the KRb molecule. Presented APECs correlate with 11 atomic asymptotes, starting from ground K(4s)+Rb(5s) atomic limit and ending on double-excited K(4p)+Rb(5p) atomic limit. All results of the presented...
-
Transition dipole moment functions of the KRb molecule
Open Research DataElectronic transition dipole moment functions (TDMF) have been calculated for the singlet (s) and triplet (t) Sigma+ (S+), Pi (P), and Delta (D) electronic states of the KRb molecule. TDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. All results of the transition dipole moments...
-
Permanent dipole moment functions of the KRb molecule
Open Research DataElectronic permanent dipole moment functions (PDMF) have been calculated for the singlet (s) and triplet (t) Sigma+, Sigma-, Pi, and Delta electronic states of the KRb molecule. PDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. All results of the permanent dipole moments have been...
-
Born-Oppenheimer potential energy curves of the NaK molecule
Open Research DataAdiabatic potential energy curves (APEC) of the singlet (s) and triplet (t) Sigma+, Pi, and Delta electronic states have been calculated for the NaK molecule. All results of the presented molecular states have been obtained by the nonrelativistic multireference configuration interaction (MRCI) method used with pseudopotentials describing the interaction...