Search results for: recombinant strains
-
Detection of cellulose production capacity of recombinant Escherichia coli strains BL21(DE3) and AAEC191A
Open Research DataBacteria that form biofilms generate an extracellular matrix (ECM), where cellulose stands out as a key constituent. An approach for assessing microorganisms' cellulose production involves using calcofluor white staining on colonies. In this method, a fluorescent dye (calcofluor-white) is introduced to a stable YESCA substrate composed of casamino acids,...
-
Detection of cellulose production capacity of recombinant Escherichia coli strains BL21(DE3) and AAEC191A
Open Research DataBacteria that form biofilms generate an extracellular matrix (ECM), where cellulose stands out as a key constituent. An approach for assessing microorganisms' cellulose production involves using calcofluor white staining on colonies. In this method, a fluorescent dye (calcofluor-white) is introduced to a stable YESCA substrate composed of casamino acids,...
-
Detection of cellulose production capacity of recombinant Escherichia coli strains BL21(DE3) and AAEC191A
Open Research DataBacteria that form biofilms generate an extracellular matrix (ECM), where cellulose stands out as a key constituent. An approach for assessing microorganisms' cellulose production involves using calcofluor white staining on colonies. In this method, a fluorescent dye (calcofluor-white) is introduced to a stable YESCA substrate composed of casamino acids,...
-
Detection of cellulose production capacity of recombinant Escherichia coli strains BL21(DE3) and AAEC191A
Open Research DataBacteria that form biofilms generate an extracellular matrix (ECM), where cellulose stands out as a key constituent. An approach for assessing microorganisms' cellulose production involves using calcofluor white staining on colonies. In this method, a fluorescent dye (calcofluor-white) is introduced to a stable YESCA substrate composed of casamino acids,...
-
Study of the influence of the presence of Dr fimbriae on the sedimentation of recombinant Escherichia coli strains: AAEC191A and BL21(DE3)
Open Research DataCell sedimentation in the medium is a common phenomenon in most bacterial enviroments. This study specifically investigated the impact of Dr fimbriae presence on cell deposition. To explore this, recombinant Escherichia coli strains were employed, including BL21(DE3)/pCC90, BL21(DE3)/pACYCpBAD, BL21(DE3)/pCC90 Dra D-mut, BL21(DE3)/pCC90 D54-STOP, AAEC191A/pCC90,...
-
Study of the influence of the presence of Dr fimbriae on the hydrophobicity of cells of recombinant Escherichia coli strains: AAEC191A and BL21(DE3)
Open Research DataThe ability of a cell surface to repel or adhere to surfaces is crucial, and it was assessed through a microbiological adhesion test involving hexadecane and xylene. In this method, microorganisms in an aqueous layer are mixed with an organic layer, and after completion, the absorbance of each sample is measured at a 570 nm wavelength. The results obtained...
-
Cloning, expression in Komagataella phaffii, and biochemical characterization of recombinant sequence variants of Pseudomonas sp. S9 GDSL-esterase
PublicationTwo recombinant Komagataella phaffii (formerly Pichia pastoris) yeast strains for production of two sequential variants of EstS9 esterase from psychrotolerant bacterium Pseudomonas sp. S9, i.e. αEstS9N (a two-domain enzyme consisting of a catalytic domain and an autotransporter domain) and αEstS9Δ (a single-domain esterase) were constructed. However, only one of recombinant K. phaffii strains, namely Komagataella phaffii X-33/pPICZαestS9Δ,...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Use of Escherichia coli Nissle 1917 producing recombinant colicins for treatment of IBD patients
PublicationPatients with Crohn’s Disease and ulcerative colitis infected with Adherent-Invasive Escherichia coli strains constitute the largest group among Inflammatory Bowel Disease subjects, when taking into account all known etiological agents of the disease. A possible link between these pathogenic bacteria and inflammation process has gained the confidence in recently published papers. Observed enteric neuroglial cells apoptosis and...
-
Characterization of recombinant homocitrate synthase from Candida albicans
PublicationLYS21 and LYS22 genes from Candida albicans encoding isoforms of homocitrate synthase (HCS), an enzyme catalyzing the first committed step in the L-lysine biosynthetic pathway, were cloned and expressed as NoligoHistagged fusion proteins in Escherichia coli. The purified gene products revealed HCS activity, i.e. catalyzed the condensation of α-ketoglutarate with acetyl-coenzyme A to yield homocitrate. The recombinant enzymes were purified...
-
A New Expression System Based on Psychrotolerant Debaryomyces macquariensis Yeast and Its Application to the Production of Cold-Active β-D-Galactosidase from Paracoccus sp. 32d
PublicationYeasts provide attractive host/vector systems for heterologous gene expression. The currently used yeast-based expression platforms include mesophilic and thermotolerant species. A eukaryotic expression system working at low temperatures could be particularly useful for the production of thermolabile proteins and proteins that tend to form insoluble aggregates. For this purpose, an expression system based on an Antarctic psychrotolerant...
-
Expression of a GDSL esterase from Pseudomonas sp. S9 in Pichiapastoris
PublicationCold active lipolytic enzymes are promising to replace the conventional enzymes processes of biotechnological industries. One of the most important feature of the cold-active lipases and esterases is that they offer economic benefits through energy saving. In general, they exhibit high activity at low temperatures and low thermostability at moderate temperatures. Lipolytic enzyme EstS9 was isolated from Pseudomonas sp. S9. A multiple...
-
Cloning, expression, and biochemical characterization of a coldactive GDSL-esterase of a Pseudomonas sp. S9 isolated from Spitsbergen island soil
PublicationAn estS9 gene, encoding an esterase of the psychrotolerant bacterium Pseudomonas sp. S9 was cloned and sequenced. The deduced sequence revealed a protein of 636 amino acid residues with a molecular mass of 69 kDa.Further amino acid sequence analysis revealed that the EstS9 enzyme contained a G-D-S-L motif centered at a catalytic serine, an N-terminal catalytic domain and a C-terminal autotransporter domain. Two recombinant E. coli...
-
Antifungal Effect of Penicillamine Due to the Selective Targeting of L-Homoserine O-Acetyltransferase
PublicationDue to the apparent similarity of fungal and mammalian metabolic pathways, the number of established antifungal targets is low, and the identification of novel ones is highly desirable. The results of our studies, presented in this work, indicate that the fungal biosynthetic pathway of L-methionine, an amino acid essential for humans, seems to be an attractive perspective. The MET2 gene from Candida albicans encoding L-homoserine...
-
An MTA-phosphorylase gene discovered in the metagenomic library derived from Antarctic top soil during screening for lipolytic active clones confers strong pink fluorescence in the presence of rhodamine B.
PublicationIn this work, we present the construction of a metagenomic library in Escherichiacoli using the pUC19 vector and environmental DNA directly isolated fromAntarctic topsoil and screened for lipolytic enzymes. Unexpectedly, the screeningon agar supplemented with olive oil and rhodamine B revealed one unusual pinkfluorescent clone (PINKuv) out of 85 000 clones. This clone harbored a plasmid,pPINKuv, which has an insert of 8317 bp that...
-
Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions
PublicationToxoplasmosis is a parasitic zoonosis of veterinary importance, with implications for public health. Toxoplasma gondii infection causes abortion or congenital disease in small ruminants. Moreover, the consumption of infected meat, cured meat products, or unpasteurized milk and dairy products can facilitate zoonotic transmission. Serological studies conducted in various European countries have shown the high seroprevalence of specific...
-
Inter Applied Chemistry Programme 6 A practical approach to novel industrial enzymes Dr Natasha Bozic
e-Learning CoursesInter Applied Chemistry Programme 6 - A practical approach to novel industrial enzymes Dr Natasha Bozic The purpose of the course is to introduce students to the technologies of industrial enzymes discovery and manufacturing and to provide in depth insight about the advantages of using enzyme preparations in industry. Lectures will cover the common workflows of industrial enzymology including following topics: general enzyme...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: AAEC191A/pACYCpBAD to polystyrene in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: AAEC191A/pACYCpBAD to glass in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: AAEC191A/pCC90 to glass in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: AAEC191A/pCC90 to polystyrene in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: BL21(DE3)/pCC90 to polystyrene in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: BL21(DE3)/pACYCpBAD to glass in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: BL21(DE3)/pCC90 to glass in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...
-
Study of the influence of the presence of Dr fimbriae on the adherence of cells of the recombinant Escherichia coli strain: BL21(DE3)/pACYCpBAD to polystyrene in a dynamic system
Open Research DataThe attachment of bacteria begins the process of surface colonization, called biofilm development, characterized by a number of physicochemical and molecular interactions. Adherence to inert surfaces typically involves nonspecific interactions, whereas adherence to biological surfaces is associated with specific ligand-receptor interactions. In this...