Filtry
wszystkich: 84
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (69)
Wyniki wyszukiwania dla: euler-lagrange equations
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Potencjał BadawczyW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Mechaniki i Wytrzymałości Materiałów
Potencjał BadawczyStatyka i dynamika złożonych układów mechanicznych i biomechanicznych
-
Zespół Katedry Wytrzymałości Materiałów
Potencjał BadawczyKatedra zajmuje się zagadnieniami związanymi z wytrzymałością elementów konstrukcji, ich teorią oraz analizą, jak również do myśli przewodnich należy zaliczyć materiałowe badania doświadczalne oraz prace nad technologią betonu. Współpracujemy z przemysłem z branż budowlanych i okołobudowlanych, wykorzystując wypracowane doświadczenie i wiedzę z zakresu materiałów konstrukcyjnych i budowlanych.
Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (15)
Wyniki wyszukiwania dla: euler-lagrange equations
-
Laboratorium Badawcze 2-3
Oferta BiznesowaObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
-
Laboratorium Technologii Kosmicznych ESA_lab@GUT
Oferta BiznesowaESA_Lab@GUT został oficjalnie otwarty przez prof. Johanna-Dietricha Woernera, dyrektora generalnego Europejskiej Agencji Kosmicznej w trakcie pierwszej Studenckiej Konferencji Kosmicznej 2020 organizowanej przez Polską Agencję Kosmiczną i Politechnikę Gdańską. Jest to laboratorium Technologii Kosmicznych pod opieką KN SimLE. W sali znajduje się sprzęt do wykonywania drobnych komponentów mechanicznych, wykonywania testów komponentów...
-
Środowiskowe Laboratorium Technologii Bezprzewodowych
Oferta BiznesowaŚrodowiskowe Laboratorium Technologii Bezprzewodowych powstało w ramach realizacji projektu CZT Centrum Zaawansowanych Technologii POMORZE i mieści się w Katedrze Inżynierii Mikrofalowej i Antenowej na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. Laboratorium zostało wyposażone w specjalistyczne zaplecze aparaturowe, które w połączeniu z kompetencjami naukowymi i technologicznymi kadry pozwala na...
Pozostałe wyniki Pokaż wszystkie wyniki (916)
Wyniki wyszukiwania dla: euler-lagrange equations
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublikacjaAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublikacjaThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...