ISSN:
eISSN:
Dyscypliny:
- matematyka (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2024 | 100 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2024 | 100 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 100 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 100 | Lista ministerialna czasopism punktowanych (2019-2022) |
2018 | 30 | A |
2017 | 30 | A |
2016 | 30 | A |
2015 | 30 | A |
2014 | 30 | A |
2013 | 25 | A |
2012 | 25 | A |
2011 | 25 | A |
2010 | 27 | A |
Model czasopisma:
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 1.5 |
Rok | Punkty |
---|---|
2023 | 1.5 |
2022 | 2 |
2021 | 2 |
2020 | 1.9 |
2019 | 1.7 |
2018 | 1.6 |
2017 | 1.4 |
2016 | 1.3 |
2015 | 1.3 |
2014 | 1.2 |
2013 | 1.3 |
2012 | 1.3 |
2011 | 1.3 |
Impact Factor:
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 3
Katalog Czasopism
Rok 2022
-
On a comparison principle and the uniqueness of spectral flow
PublikacjaThe spectral flow is a well-known quantity in spectral theory that measures the variation of spectra about 0 along paths of selfadjoint Fredholm operators. The aim of this work is twofold. Firstly, we consider homotopy invariance properties of the spectral flow and establish a simple formula which comprises its classical homotopy invariance and yields a comparison theorem for the spectral flow under compact perturbations. We apply...
Rok 2004
-
Existence of unbounded solutions to parabolic equations with functional dependence
PublikacjaThe Cauchy problem for nonlinear parabolic differential-functional equations is considered. Under natural generalized Lipschitz-type conditions with weights, the existence and uniqueness of unbounded solutions is obtained in three main cases: (i) the functional dependence u(·); (ii) the functional dependence u(·) and ∂xu(·); (iii) the functional dependence u(·)and the pointwise dependence ∂xu(t,x).
Rok 2002
-
The asymptotic formula for the error in orthogonal projection
PublikacjaW pracy podano formułę asymptotyczną błędu aproksymacji dla rzutów ortogonalnych w normie L^p.
wyświetlono 636 razy