A Method of Fast and Simultaneous Calibration of Many Mobile FMCW Radars Operating in a Network Anti-Drone System - Publikacja - MOST Wiedzy

Wyszukiwarka

A Method of Fast and Simultaneous Calibration of Many Mobile FMCW Radars Operating in a Network Anti-Drone System

Abstrakt

A market for small drones is developing very fast. They are used for leisure activities and exploited in commercial applications. However, there is a growing concern for accidental or even criminal misuses of these platforms. Dangerous incidents with drones are appearing more often, and have caused many institutions to start thinking about anti-drone solutions. There are many cases when building stationary systems seems to be aimless since the high cost does not correspond with, for example, threat frequency. In such cases, mobile drone countermeasure systems seem to perfectly meet demands. In modern mobile solutions, frequency modulated continuous wave (FMCW) radars are frequently used as detectors. Proper cooperation of many radars demands their measurements to be brought to a common coordinate system—azimuths must be measured in the same direction (preferably the north). It requires calibration, understood as determining constant corrections to measured angles. The article presents the author's method of fast, simultaneous calibration of many mobile FMCW radars operating in a network. It was validated using 95,000 numerical tests. The results show that the proposed method significantly improves the north orientation of the radars throughout the whole range of the initial errors. Therefore, it can be successfully used in practical applications.

Cytowania

  • 7

    CrossRef

  • 8

    Web of Science

  • 7

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 59 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Remote Sensing nr 11, strony 1 - 19,
ISSN: 2072-4292
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Nowak A., Naus K., Maksimiuk D.: A Method of Fast and Simultaneous Calibration of Many Mobile FMCW Radars Operating in a Network Anti-Drone System// Remote Sensing -Vol. 11,iss. 22 (2019), s.1-19
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs11222617
Bibliografia: test
  1. Goldman Sachs. Available online: https://www.goldmansachs.com/our-thinking/technology-driving- innovation/drones/ (accessed on 11 August 2019). otwiera się w nowej karcie
  2. Interesting Engineering. Available online: https://interestingengineering.com/top-5-drone-intercepting- methods-you-should-know-about (accessed on 11 August 2019). otwiera się w nowej karcie
  3. Michel, A.H. Counter-Drone Syst. The report by Bard College's Center for the Study of the Drone: Dutchess Country, NY,USA, 2018. otwiera się w nowej karcie
  4. Hertz Systems. Available online: http://thehawksystem.com/pl/ (accessed on 1 September 2019). otwiera się w nowej karcie
  5. SpotterRF. Available online: https://spotterrf.com/products/mobile-solutions/ (accessed on 1 September 2019).
  6. Farlik, J.; Kratky, M.; Casar, J.; Stary, V. Multispectral Detection of Commercial Unmanned Aerial Vehicles. Sensors 2019, 19, 1517, doi:10.3390/s19071517. otwiera się w nowej karcie
  7. Laurenzis, M.; Hengy, S.; Hommes, A.; Kloeppel, F.; Shoykhetbrod, A.; Geibig, T.; Johannes, W.; Naz, P.; Christnacher, F. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVI, Anaheim, CA, USA, 10-12 April 2017. otwiera się w nowej karcie
  8. Nassi, B.; Shabtai, A.; Masuoka, R.; Elovici, Y. SoK -Security and Privacy in the Age of Drones: Threats, Challenges, Solution Mechanisms, and Scientific Gaps. arXiv 2019, arXiv:1903.05155. otwiera się w nowej karcie
  9. Doroftei, D.; De Cubber, G. Qualitative and quantitative validation of drone detection systems. In Proceedings of the International Symposium on Measurement and Control in Robotics, Mons, Belgium, 26-28 September 2018, doi:10.5281/zenodo.1462586. otwiera się w nowej karcie
  10. Zhahir, A.; Razali, A.; Mohd Ajir, M.R. Current development of UAV sense and avoid system. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 152, 012035. otwiera się w nowej karcie
  11. Eriksson, N. Conceptual Study of a Future Drone Detection System. Master's Thesis, Product Development, Chalmers University of Technology, Gothenburg, Sweden, 2018.
  12. Hommes, A.; Shoykhetbrod, A.; Noetel, D.; Stanko, S.; Laurenzis, M.; Hengy, S.; Christnacher, F. Detection of acoustic, electro-optical and radar signatures of small unmanned aerial vehicles. In Proceedings of the Target and Background Signatures II, Edinburgh, UK, 26-27 September 2016; Volume 9997, p. 999701. otwiera się w nowej karcie
  13. Stateczny, A.; Lubczonek, J. FMCW Radar Implementation in River Information Services in Poland. In Proceedings of 16th International Radar Symposium (IRS), Dresden, Germany, 24-26 June 2015; pp. 852- 857. otwiera się w nowej karcie
  14. Farlik, J. Radar cross section and detection of small unmanned aerial vehicles. In Proceedings of the 17th International Conference on Mechatronics -Mechatronika (ME), Prague, Czech Republic, 7-9 December 2016; pp.1-7.
  15. Schroder, A. Numerical and Experimental Radar Cross Section Analysis of the Quadrocopter DJI Phantom 2. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27-30 October 2015; pp. 463-468; otwiera się w nowej karcie
  16. Ritchie, M. Micro-drone RCS Analysis, In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27-30 October 2015. otwiera się w nowej karcie
  17. Li, C.J.; Ling H. An Investigation on the Radar Signatures of Small Consumer Drones. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 649-652. otwiera się w nowej karcie
  18. Guay, R.; Drolet, G.; Bray, J.R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle. IET Radar, Sonar Navig. 2017, 11, 1155-1160. otwiera się w nowej karcie
  19. Herschfelt, A.; Birtcher, R.C.; Gutierrez, R.M.; Rong, Y.; Yu, H.; Balanis, C.A.; Bliss, D.W. Consumer-Grade Drone Radar Cross-Section and Micro-Doppler Phenomenology. In Proceedings of the 2017 IEEE Radar Conference, Seattle, WA, USA, 8-12 May 2017; pp. 0981-0985. otwiera się w nowej karcie
  20. Kim, B.K.; Kang, H.-S.; Park, S.-O.Experimental Analysis of Small Drone Polarimetry Based on Micro- Doppler Signature. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1670-1674. otwiera się w nowej karcie
  21. de Wit, J.J.M.; Harmanny, R.I.A.; Molchanov, P.Radar micro-Doppler feature extraction using the Singular Value Decomposition. In Proceedings of the 2014 International Radar Conference, Lille, France, 13-17 October 2014; pp. 1-6. otwiera się w nowej karcie
  22. Molchanov, P.; Egiazarian, K.; Astola, J.; Harmanny, R.I.A.; de Wit, J.J.M. Classification of small UAVs and birds by micro-Doppler signatures. In Proceedings of the 2013 European Radar Conference (EuRAD), Nuremberg, Germany, 9-11 October 2013; pp.172-175. otwiera się w nowej karcie
  23. Harmanny, R.I.A.; de Wit, J.J.M.; Cabic, G.P. Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram. In Proceedings of the 11th European Radar Conference (EuRAD), Rome, Italy, 8-10 October 2014; pp.165-168. otwiera się w nowej karcie
  24. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 76 razy

Publikacje, które mogą cię zainteresować

Meta Tagi