Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production - Publikacja - MOST Wiedzy

Wyszukiwarka

Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production

Abstrakt

Wastewater treatment plants (WWTPs) consume high amounts of energy which is mostly purchased from the grid. During the past years, many ongoing measures have taken place to analyze the possible solutions for both reducing the energy consumption and increasing the renewable energy production in the plants. This review contains all possible aspects which may assist to move towards energy neutrality in WWTPs. The sources of energy in wastewater were introduced and different indicators to express the energy consumption were discussed with examples of the operating WWTPs worldwide. Furthermore, the pathways for energy consumption reductions were reviewed including the operational strategies and the novel technological upgrades of the wastewater treatment processes. Then the methods of recovering the potential energy hidden in wastewater were described along with application of renewable energies in WWTPs. The available assessment methods, which may help in analyzing and comparing WWTPs in terms of energy and greenhouse gas emissions were introduced. Eventually, successful case studies on energy self-sufficiency of WWTPs were listed and the innovative projects in this area were presented.

Cytowania

  • 1 8 2

    CrossRef

  • 0

    Web of Science

  • 1 8 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 210 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY nr 17, strony 655 - 689,
ISSN: 1569-1705
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Maktabifard M., Zaborowska E., Mąkinia J.: Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production// REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY. -Vol. 17, nr. 4 (2018), s.655-689
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11157-018-9478-x
Bibliografia: test
  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257-275. https://doi.org/10.1016/j.sjbs.2012.04.005 otwiera się w nowej karcie
  2. Aboobakar A, Cartmell E, Stephenson T et al (2013) Nitrous oxide emissions and dissolved oxygen profiling in a full- scale nirifying activated sludge treatment plant. Water Res 47:524-535. https://doi.org/10.1016/j.watres.2012.10.004 otwiera się w nowej karcie
  3. Ahonen T, Tamminen J, Viholainen J, Koponen J (2014) Energy efficiency optimizing speed control method for reservoir pumping applications. Energy Eff 8:117-128. https://doi. org/10.1007/s12053-014-9282-6 otwiera się w nowej karcie
  4. Å mand L, Olsson G, Carlsson B (2013) Aeration control-a review. Water Sci Technol 67:2374-2398. https://doi.org/ 10.2166/wst.2013.139 otwiera się w nowej karcie
  5. Arashiro LT, Montero N, Ferrer I et al (2018) Life cycle assessment of high rate algal ponds for wastewater treat- ment and resource recovery. Sci Total Environ 622-623:1118-1130. https://doi.org/10.1016/J. SCITOTENV.2017.12.051 otwiera się w nowej karcie
  6. Arnell M, Rahmberg M, Oliveira F, Jeppsson U (2017) Multi- objective performance assessment of wastewater treatment plants combining plant-wide process models and life cycle assessment. J Water Clim Change 8:715-729. https://doi. org/10.2166/wcc.2017.179 otwiera się w nowej karcie
  7. Aymerich I, Rieger L, Sobhani R et al (2015) The difference between energy consumption and energy cost: modelling energy tariff structures for water resource recovery facili- ties. Water Res 81:113-123. https://doi.org/10.1016/j. watres.2015.04.033 otwiera się w nowej karcie
  8. Ayoub M, Afify H, Abdelfattah A (2017) Chemically enhanced primary treatment of sewage using the recovered alum from water treatment sludge in a model of hydraulic clari- flocculator. J Water Process Eng 19:133-138. https://doi. org/10.1016/J.JWPE.2017.07.014 otwiera się w nowej karcie
  9. Bachmann N (2015) Sustainable biogas production in municipal wastewater treatment plants. IEA Bioenergy 20:4-5 otwiera się w nowej karcie
  10. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109-2121. https://doi.org/10.1021/ie071083w otwiera się w nowej karcie
  11. Bao Z, Sun S, Sun D (2016) Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. Int Biodeterior Biodegrad 108:108-114. https://doi.org/10.1016/J.IBIOD.2015.11.028 otwiera się w nowej karcie
  12. Barber WPF (2016) Thermal hydrolysis for sewage treatment: a critical review. Water Res 104:53-71. https://doi.org/10. 1016/j.watres.2016.07.069 otwiera się w nowej karcie
  13. Barbu M, Vilanova R, Meneses M, Santin I (2017) Global evaluation of wastewater treatment plants control strate- gies including CO 2 emissions. IFAC Pap OnLine 50:12956-12961. https://doi.org/10.1016/J.IFACOL.2017. 08.1800 otwiera się w nowej karcie
  14. Bastian R, Cuttica J, Fillmore L et al (2011) Opportunities for combined heat and power at wastewater treatment facili- ties: market analysis and lessons from the field combined heat and power partnership. In: US EPA, CHP Partnersh. doi: 430R11018 otwiera się w nowej karcie
  15. Beil M, Hoffstede U, Klaas U (2009) Biogasaufbereitung in Deutschland und Europa-ein Blick über den Tellerrand. Energie, Wasser
  16. Belloir C, Stanford C, Soares A (2015) Energy benchmarking in wastewater treatment plants: The importance of site oper- ation and layout. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.2014.951403 otwiera się w nowej karcie
  17. Bertanza G, Canato M, Laera G (2018) Towards energy self- sufficiency and integral material recovery in waste water treatment plants: assessment of upgrading options. J Clean Prod 170:1206-1218. https://doi.org/10.1016/j.jclepro. 2017.09.228 otwiera się w nowej karcie
  18. Biochemtech (2018) No title. http://www.biochemtech.com/_ img/BIOSFig1.jpg
  19. Boncescu C, Robescu LD (2017) Experimental researches on aeration equipment used in biological wastewater treat- ment. In: 17th international multidisciplinary scientific geoconference SGEM 2017 otwiera się w nowej karcie
  20. Bourke M (2000) Full scale study of chemically enhanced pri- mary treatment in Riviera de Sao Lourenco, Brazil by full scale study of chemically enhanced primary treatment in Riviera de Sao Lourenco, Brazil. Master of Science, thesis, p 148
  21. Braun R, Wellinger A (2009) Potential of co-digestion. Int Energy Agency (IEA) Bioeng 4-14 otwiera się w nowej karcie
  22. Burton F (1996) Water and wastewater industries: characteris- tics and energy management opportunities. Electric Power Research Institute, Los Altos Cabirol N, Barragán EJ, Durán A, Noyola A (2003) Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment. Water Sci Technol 48:235-240
  23. Cantwell (2009) Running an energy-efficient wastewater utility, modifications that can improve your bottom line. Focus on Energy, SAIC/Energy Systems Group Cao Y, Van Loosdrecht MCM, Daigger GT (2017) Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbial Biotechnol 101:1365-1383. https://doi.org/10. 1007/s00253-016-8058-7 otwiera się w nowej karcie
  24. Castellet-Viciano L, Hernández-Chover V, Hernández-Sancho F (2018) Modelling the energy costs of the wastewater treatment process: the influence of the aging factor. Sci Total Environ 625:363-372. https://doi.org/10.1016/j. scitotenv.2017.12.304 otwiera się w nowej karcie
  25. Cerveira GS, Borges CP, Kronemberger FA (2018) Gas per- meation applied to biogas upgrading using cellulose acet- ate and polydimethysiloxane membranes. J Clean Prod 187:830-838. https://doi.org/10.1016/j.jclepro.2018.03. 008 otwiera się w nowej karcie
  26. Chae KJ, Kang J (2013) Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers Manag 75:664-672. https://doi.org/10.1016/j.enconman.2013.08. 028 otwiera się w nowej karcie
  27. Chen S, Chen B (2016) Urban energy-water nexus: a network perspective. Appl Energy 184:905-914. https://doi.org/10. 1016/J.APENERGY.2016.03.042 otwiera się w nowej karcie
  28. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bio- products. Biotechnol Adv 29:686-702. https://doi.org/10. 1016/j.biotechadv.2011.05.015 otwiera się w nowej karcie
  29. Colas H (2017) Drying sludge with concentrated solar power. Utility management, wastewater management, water and wastewater community. 20 Dec. https://www.fluksaqua. com/en/drying-sludge-with-concentrated-solar-power/
  30. Culha O, Gunerhan H, Biyik E et al (2015) Heat exchanger applications in wastewater source heat pumps for build- ings: a key review. Energy Build 104:215-232. https://doi. org/10.1016/j.enbuild.2015.07.013 otwiera się w nowej karcie
  31. Daelman MRJ, Van Voorthuizen EM, Van Dongen LGJM et al (2013) Methane and nitrous oxide emissions from munic- ipal wastewater treatment-results from a long-term study. Water Sci Technol 67:2350-2355. https://doi.org/10.2166/ wst.2013.109 otwiera się w nowej karcie
  32. de Haas DW, Hartly K (2004) Greenhouse gas emission from BNR plants: do we have the right focus? In: Proceedings of EPA workshop: sewage management: risk assessment and triple bottom line, 5-7 Apr 2004, Cairns, Australia de Haas DW, Pepperell C, Foley J (2014) Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data. Water Sci Technol 69:451-463. https://doi.org/10.2166/wst.2013. 572 otwiera się w nowej karcie
  33. Dular M, Griessler-Bulc T, Gutierrez-Aguirre I et al (2016) Use of hydrodynamic cavitation in (waste)water treatment. Ultrason Sonochem 29:577-588. https://doi.org/10.1016/j. ultsonch.2015.10.010 otwiera się w nowej karcie
  34. Eimco (2018). http://www.eimcoinc.com/ Enerwater Home-waste water treatment plants project-En- erwater. http://www.enerwater.eu/. Accessed 7 Feb 2018
  35. EPA (2010) Evaluation of energy consevation measures for wastewater treatment facilities. EPA-832-R-10-005. http:// water.epa.gov/scitech/wastetech/upload/Evaluation-of- Energy-Conservation-Measures-for-Wastewater- Treatment-Facilities.pdf. Accessed 7 Feb 2018 otwiera się w nowej karcie
  36. Esposito G, Frunzo L, Giordano A et al (2012) Anaerobic co- digestion of organic wastes. Rev Environ Sci Biotechnol 11:325-341. https://doi.org/10.1007/s11157-012-9277-8 otwiera się w nowej karcie
  37. Evangelisti S, Lettieri P, Borello D, Clift R (2014) Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Manag 34:226-237. https://doi.org/ 10.1016/j.wasman.2013.09.013 otwiera się w nowej karcie
  38. Feng Y, Lu X, Al-Hazmi H et al (2017) An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev Environ Sci Biotechnol 16:541-568. https://doi.org/10.1007/ s11157-017-9441-2 otwiera się w nowej karcie
  39. Flores-Alsina X, Arnell M, Amerlinck Y et al (2014) Balancing effluent quality, economic cost and greenhouse gas emis- sions during the evaluation of (plant-wide) control/opera- tional strategies in WWTPs. Sci Total Environ 466-467:616-624. https://doi.org/10.1016/J. SCITOTENV.2013.07.046 otwiera się w nowej karcie
  40. Foladori P, Vaccari M, Vitali F (2015) Energy audit in small wastewater treatment plants: methodology, energy con- sumption indicators, and lessons learned. Water Sci Technol 72:1007-1015. https://doi.org/10.2166/wst.2015. 306 otwiera się w nowej karcie
  41. Frankl P, Nowak S (2010) Technology roadmap-solar photo- voltaic energy. OECD/IEA otwiera się w nowej karcie
  42. Füreder K, Svardal K, Frey W et al (2017) Energy consumption of agitators in activated sludge tanks-actual state and optimization potential. Water Sci Technol 77:800-808. https://doi.org/10.2166/wst.2017.596 otwiera się w nowej karcie
  43. Gaius-obaseki T (2010) Hydropower opportunities in the water industry. Int J Environ Sci. https://doi.org/10.6088/ijessi. 00103010011 otwiera się w nowej karcie
  44. Gans N, Mobini S, Zhang XN (2007) Appendix E. Mass and energy balances at the Gaobeidian wastewater treatment plant in Beijing, China, pp 203-209. http://www.chemeng. lth.se/exjobb/E458.pdf. Accessed 7 Feb 2018 otwiera się w nowej karcie
  45. Gao H, Scherson YD, Wells GF (2014) Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Process Impacts 16:1223-1246. https://doi. org/10.1039/C4EM00069B otwiera się w nowej karcie
  46. Gao H, Liu M, Griffin JS et al (2017) Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms. Environ Sci Technol 51:4531-4540. https://doi.org/10. 1021/acs.est.6b04896 otwiera się w nowej karcie
  47. Gary D, Morton R, Tang C-C, Horvath R (2007) The effect of the microsludge TM treatment process on anaerobic diges- tion performance. Proc Water Environ Fed 2007:1724-1738. https://doi.org/10.2175/ 193864707788116455 otwiera się w nowej karcie
  48. Gori R, Giaccherini F, Jiang L-M et al (2013) Role of primary sedimentation on plant-wide energy recovery and carbon footprint. Water Sci Technol 68:870. https://doi.org/10. 2166/wst.2013.270 otwiera się w nowej karcie
  49. Gray D, Suto P (2008) Anaerobic digestion of food waste. Bioresour Technol. https://doi.org/10.1016/j.biortech. 2011.01.082 otwiera się w nowej karcie
  50. Grigg NS (2005) Water resources management. In: Water encyclopedia. John Wiley & Sons, Inc., Hoboken. https:// doi.org/10.1002/047147844x.wr241 otwiera się w nowej karcie
  51. Gu Y, Dong YN, Wang H et al (2016) Quantification of the water, energy and carbon footprints of wastewater treat- ment plants in China considering a water-energy nexus perspective. Ecol Indic 60:402-409. https://doi.org/10. 1016/j.ecolind.2015.07.012 otwiera się w nowej karcie
  52. Gu Y, Li Y, Li X et al (2017) The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl Energy 60:402-409. https://doi.org/10.1016/j.apenergy. 2017.02.069 otwiera się w nowej karcie
  53. Gude VG (2015a) Energy positive wastewater treatment and sludge management. Edorium J Waste Manag 1:10-15. https://doi.org/10.5348/W01-2015-2-ED-2 otwiera się w nowej karcie
  54. Gude VG (2015b) Energy and water autarky of wastewater treatment and power generation systems. Renew Sustain Energy Rev 45:52-68. https://doi.org/10.1016/J.RSER. 2015.01.055 otwiera się w nowej karcie
  55. Guerrini A, Romano G, Indipendenza A (2017) Energy effi- ciency drivers in wastewater treatment plants: a double bootstrap DEA analysis. Sustainability 9:1126. https://doi. org/10.3390/su9071126 otwiera się w nowej karcie
  56. Guerrini A, Romano G, Leardini C (2018) Economic of scale and density in the Italian water industry: a stochastic frontier approach. Util Policy 52:103-111. https://doi.org/ 10.1016/j.jup.2018.04.003 otwiera się w nowej karcie
  57. Hao X, Liu R, Huang X (2015) Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res 87:424-431. https://doi.org/10.1016/J.WATRES.2015.05. 050 otwiera się w nowej karcie
  58. Harper D (2017) Australia's first floating solar farm soon to be buoyant in Lismore. ABC North Coast, 16 Nov. http:// www.abc.net.au/news/2017-11-16/australias-first- floating-solar-farm-will-be-buoyant-in-lismore/9157878
  59. Haslinger J, Krampe J, Lindtner S (2016) Operating costs and energy demand of wastewater treatment plants in Austria: benchmarking results of the last 10 years. Water Sci Technol 74:2620-2626. https://doi.org/10.2166/wst.2016. 390 otwiera się w nowej karcie
  60. Heidrich ES, Curtis TP, Dolfing J (2011) Determination of the internal chemical energy of wastewater. Environ Sci Technol 45:827-832. https://doi.org/10.1021/es103058w otwiera się w nowej karcie
  61. Henriques J, Catarino J (2017) Sustainable value-an energy efficiency indicator in wastewater treatment plants. J Clean Prod 142:323-330. https://doi.org/10.1016/j.jclepro.2016. 03.173 otwiera się w nowej karcie
  62. Hernández-Sancho F, Molinos-Senante M, Sala-Garrido R (2011) Energy efficiency in Spanish wastewater treatment plants: a non-radial DEA approach. Sci Total Environ 409:2693-2699. https://doi.org/10.1016/j.scitotenv.2011. 04.018 otwiera się w nowej karcie
  63. Higgins P (2016) Myths and realities: ammonium based aeration control in wastewater. YSI. https://www.ysi.com/ysi-blog/ water-blogged-blog/2014/03/myths-and-realities- ammonium-based-aeration-control-in-wastewater. Acces- sed 12 Dec 2017
  64. Ho SW, Cheung KK, Fung WC (2014) Sustainable wastewater treatment-ways to achieve energy neutrality. HKIE Trans Hong Kong Inst Eng 21:240-252. https://doi.org/10.1080/ 1023697X.2014.973171 otwiera się w nowej karcie
  65. Horstmeyer N, Weißbach M, Koch K, Drewes JE (2017) A novel concept to integrate energy recovery into potable water reuse treatment schemes. J Water Reuse Desalin. https://doi.org/10.2166/wrd.2017.051 otwiera się w nowej karcie
  66. Husmann M (2009) Improving energy efficiency in waste water treatment: What emerging countries can learn from expe- rience gained in the developed world. http://siteresources. worldbank.org/EXTWAT/Resources/4602122- 1213366294492/5106220-1234469721549/21.3_Energy_ efficiency.pdf. Accessed 7 Feb 2018
  67. Jadhav DA, Ghosh Ray S, Ghangrekar MM (2017) Third gen- eration in bio-electrochemical system research-a sys- tematic review on mechanisms for recovery of valuable by- products from wastewater. Renew Sustain Energy Rev 76:1022-1031. https://doi.org/10.1016/j.rser.2017.03.096 otwiera się w nowej karcie
  68. Jenkins D, Wanner J (2014) Activated sludge-100 years and counting, IWA Publishing Jiang S, Wang J, Zhao Y et al (2016) Residential water and energy nexus for conservation and management: a case study of Tianjin. Int J Hydrogen Energy 41:15919-15929. https://doi.org/10.1016/J.IJHYDENE.2016.04.181 otwiera się w nowej karcie
  69. Jonasson M (2007) Energy benchmark for wastewater treatment processes -A comparison between Sweden and Austria. In: Department of Industrial electrical engineering and automation, Lund University, Sweden
  70. Jordan M (2018) Applications sludge treatment-ULTRA- WAVES. http://www.ultrawaves.de/wastewater- treatment-plants/applications-sludge-treatment. Accessed 13 Mar 2018 otwiera się w nowej karcie
  71. Kadier A, Simayi Y, Abdeshahian P et al (2016) A compre- hensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydro- gen gas production. Alex Eng J 55:427-443. https://doi. org/10.1016/J.AEJ.2015.10.008 otwiera się w nowej karcie
  72. Kanai M, Ferre V, Wakahara S et al (2010) A novel combination of methane fermentation and MBR-Kubota submerged Anaerobic membrane bioreactor process. Desalination 250:964-967. https://doi.org/10.1016/J.DESAL.2009.09. 082 otwiera się w nowej karcie
  73. Karafa D, Devlin J, Yankovich D, Froehlich D (2007) Effluent to energy and it is renewable. In: Proceedings of the water environment federation, WEFTEC. pp 4563-4577. https:// doi.org/10.2175/193864707787974427 otwiera się w nowej karcie
  74. Kartal B, Kuenen JG, Van Loosdrecht MCM (2010) Sewage treatment with anammox. Science 328:702-703 otwiera się w nowej karcie
  75. Keymer P, Ruffell I, Pratt S, Lant P (2013) High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour Technol 131:128-133. https://doi.org/10.1016/j. biortech.2012.12.125 otwiera się w nowej karcie
  76. Khiewwijit R, Rijnaarts H, Temmink H, Keesman KJ (2018) Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitritation/Anammox and microalgae for environmental impacts. Sci Total Environ 628-629:74-84. https://doi.org/10.1016/J.SCITOTENV. 2018.01.334 otwiera się w nowej karcie
  77. Klaus S (2016) Comparison of ABAC and AVN aeration strategies for efficient nitrogen removal. Proceedings of the 89th annual water environmental federation technical exhibition and conference. Chicago, Illinois, Sept. 26-30 otwiera się w nowej karcie
  78. Kligerman DC, Bouwer EJ (2015) Prospects for biodiesel pro- duction from algae-based wastewater treatment in Brazil: a review. Renew Sustain Energy Rev 52:1834-1846. https:// doi.org/10.1016/j.rser.2015.08.030 otwiera się w nowej karcie
  79. Koch K, Helmreich B, Drewes JE (2015) Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Appl Energy 137:250-255. https://doi.org/10. 1016/J.APENERGY.2014.10.025 otwiera się w nowej karcie
  80. Koch K, Plabst M, Schmidt A et al (2016) Co-digestion of food waste in a municipal wastewater treatment plant: com- parison of batch tests and full-scale experiences. Waste Manag 47:28-33. https://doi.org/10.1016/J.WASMAN. 2015.04.022 otwiera się w nowej karcie
  81. Kooijman G, De Kreuk MK, van Lier JB (2017) Influence of chemically enhanced primary treatment on anaerobic digestion and dewaterability of waste sludge. Water Sci Technol 76:1629-1639. https://doi.org/10.2166/wst.2017. 314 otwiera się w nowej karcie
  82. Korth B, Maskow T, Günther S, Harnisch F (2017) Estimating the energy content of wastewater using combustion calorimetry and different drying processes. Front Energy Res 5:23. https://doi.org/10.3389/fenrg.2017.00023 otwiera się w nowej karcie
  83. Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255-2264. https://doi. org/10.1016/j.biortech.2010.10.035 otwiera się w nowej karcie
  84. Lackner S, Gilbert EM, Vlaeminck SE et al (2014) Full-scale partial nitritation/anammox experiences-an application survey. Water Res 55:292-303. https://doi.org/10.1016/j. watres.2014.02.032 otwiera się w nowej karcie
  85. Langworthy AC (2008) 2008 Annual reports and summary point Loma wastewater treatment plant and ocean outfall. San Diego Lee S, Esfahani IJ, Ifaei P et al (2017) Thermo-environ-eco- nomic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system. Energy Convers Manag 142:385-401. https://doi.org/10.1016/j.enconman.2017. 03.060 otwiera się w nowej karcie
  86. Li W, Li L, Qiu G (2017) Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J Clean Prod 163:S374-S378. https://doi.org/10. 1016/j.jclepro.2015.12.109 otwiera się w nowej karcie
  87. Lin L, Li R, Li Y et al (2017) Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process Biochem 54:135-139. https://doi.org/10.1016/J.PROCBIO.2016.12. 016 otwiera się w nowej karcie
  88. Lin L, Li R, Li X (2018) Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation. J Clean Prod 172:3334-3341. https://doi.org/10.1016/J.JCLEPRO. 2017.11.199 otwiera się w nowej karcie
  89. Lindter S, Schaar H, Kroiss H (2008) Benchmarking of large municipal wastewater treatment plants treating over 100,000 PE in Austria. Water Sci Technol 57:1478-1493. https://doi.org/10.2166/wst.2008.214 otwiera się w nowej karcie
  90. Liu G, Wang J (2017) Enhanced removal of total nitrogen and total phosphorus by applying intermittent aeration to the Modified Ludzack-Ettinger (MLE) process. J Clean Prod 166:163-171. https://doi.org/10.1016/j.jclepro.2017.08. 017 otwiera się w nowej karcie
  91. Liu X, Xu Q, Wang D et al (2018) Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanism and applications. Bioresour Technol 268:230-236. https://doi. org/10.1016/j.biortech.2018.07.109 otwiera się w nowej karcie
  92. Longo S, d'Antoni BM, Bongards M et al (2016) Monitoring and diagnosis of energy consumption in wastewater treat- ment plants. A state of the art and proposals for improve- ment. Appl Energy 179:1251-1268. https://doi.org/10. 1016/j.apenergy.2016.07.043 otwiera się w nowej karcie
  93. Lorenzo-Toja Y, Vázquez-Rowe I, Chenel S et al (2015) Eco- efficiency analysis of Spanish WWTPs using the LCA ? DEA method. Water Res 68:651-666. https://doi.org/10. 1016/j.watres.2014.10.040 otwiera się w nowej karcie
  94. Lorenzo-Toja Y, Alfonsin C, Amores MJ et al (2016) Beyond the conventional life cycle inventory in wastewater treat- ment plants. Sci Total Environ 553:71-82. https://doi.org/ 10.1016/j.scitotenv.2016.02.073 otwiera się w nowej karcie
  95. Lu X, Pereira TDS, Al-Hazmi H et al (2018) Model-based evaluation of N 2 O production pathways in the anammox- enriched granular sludge cultivated in a sequencing batch reactor. Environ Sci Technol 52:2800-2809. https://doi. org/10.1021/acs.est.7b05611 otwiera się w nowej karcie
  96. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation pro- cesses (AOPs) involving ultrasound for waste water treat- ment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990-1003. https://doi.org/10.1016/J. ULTSONCH.2009.09.005 otwiera się w nowej karcie
  97. Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74:83-92. https://doi.org/10. 1016/j.seppur.2010.05.010 otwiera się w nowej karcie
  98. Mamais D, Noutsopoulos C, Dimopoulou A et al (2015) Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci Technol 71:303-308. https://doi.org/10.2166/wst.2014.521 otwiera się w nowej karcie
  99. Mannina G, Cosenza A, Gori R et al (2016a) Greenhouse gas emissions from wastewater treatment plants on a plantwide scale: sensitivity and uncertainty analysis. J Environ Eng 142:04016017. https://doi.org/10.1061/(ASCE)EE.1943- 7870.0001082 otwiera się w nowej karcie
  100. Mannina G, Ekama G, Caniani D et al (2016b) Greenhouse gases from wastewater treatment-a review of modelling tools. Sci Total Environ 551-552:254-270. https://doi.org/ 10.1016/J.SCITOTENV.2016.01.163 otwiera się w nowej karcie
  101. Maragkaki AE, Fountoulakis M, Kyriakou A et al (2018) Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag 71:605-611. https://doi.org/ 10.1016/J.WASMAN.2017.04.024 otwiera się w nowej karcie
  102. Marner ST, Schröter D, Jardin N (2016) Towards energy neu- trality by optimising the activated sludge process of the WWTP Bochum-Ö lbachtal. Water Sci Technol 73:3057-3063. https://doi.org/10.2166/wst.2016.142 otwiera się w nowej karcie
  103. Martin I, Pidou M, Soares A et al (2011) Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environ Technol 32:921-932. https://doi.org/10.1080/09593330.2011.565806 otwiera się w nowej karcie
  104. Masłoń A (2017) Analysis of energy consumption at the Rzes- zów Wastewater Treatment Plant. E3S Web Conf 22:00115. https://doi.org/10.1051/e3sconf/20172200115 otwiera się w nowej karcie
  105. Mattioli A, Gatti GB, Mattuzzi GP et al (2017) Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study. Renew Energy 113:980-988. https://doi.org/10.1016/j.renene.2017.06.079 otwiera się w nowej karcie
  106. McCarty PL, Bae J, Kim J (2011) Domestic wastewater treat- ment as a net energy producer-can this be achieved? Environ Sci Technol 45:7100-7106. https://doi.org/10. 1021/es2014264 otwiera się w nowej karcie
  107. McNabola A, Coughlan P, Williams AP (2014) Energy recovery in the water industry: an assessment of the potential of micro-hydropower. Water Environ J. https://doi.org/10. 1111/wej.12046 otwiera się w nowej karcie
  108. Meerburg FA, Boon N, Van Winckel T et al (2016) Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater. Environ Sci Technol 50:9781-9790. https:// doi.org/10.1021/acs.est.6b01888 otwiera się w nowej karcie
  109. Menco L (2012) CAMBI thermal hydrolysis sludge treatment: medium to large-scale application. http://www. environmentindex.com/en/article/cambi-thermal- hydrolysis-sludge-treatment-medium-to-large-scale- application-677.aspx
  110. Miller MW, Regmi P, Murthy S et al (2015) Combining high- rate activated sludge and shortcut nitrogen removal for efficient carbon and energy utilization. Proc Water Environ Fed, Water Energy. https://doi.org/10.2175/ 193864715819559045 otwiera się w nowej karcie
  111. Mizuta K, Shimada M (2010) Benchmarking energy consump- tion in municipal wastewater treatment plants in Japan. Water Sci Technol 62:2256-2262. https://doi.org/10.2166/ wst.2010.510 otwiera się w nowej karcie
  112. Molinos-Senante M, Hernández-Sancho F, Mocholí-Arce M, Sala-Garrido R (2014) Economic and environmental per- formance of wastewater treatment plants: potential reduc- tions in greenhouse gases emissions. Resour Energy Econ 38:125-140. https://doi.org/10.1016/j.reseneeco.2014.07. 001 otwiera się w nowej karcie
  113. Morgan-Sagastume F, Pratt S, Karlsson A et al (2011) Produc- tion of volatile fatty acids by fermentation of waste acti- vated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour Technol 102:3089-3097. https://doi.org/ 10.1016/j.biortech.2010.10.054 otwiera się w nowej karcie
  114. Moss L, Donovanm JF, Carr S et al (2013) Enabling the future: advancing resource recovery from biosolids. Water envi- ronmental federation (WEF). otwiera się w nowej karcie
  115. Neugebauer G, Kretschmer F, Kollmann R et al (2015) Mapping thermal energy resource potentials from wastewater treat- ment plants. Sustainability 7:12988-13010. https://doi.org/ 10.3390/su71012988 otwiera się w nowej karcie
  116. NEWRI (2009) Water & energy in the urban water cycle - Improving energy efficiency in municipal wastewater treatment. In: Nanyang environment & water research institute in collabration with PUB Singapore & global water research coalition. pp 1-18 otwiera się w nowej karcie
  117. Nouri J, Naddafi K, Nabizadeh R, Jafarinia M (2006) Energy recovery from wastewater treatment plant. Pak J Biol Sci 9:3-6. https://doi.org/10.3923/pjbs.2006.3.6 otwiera się w nowej karcie
  118. Nowak O, Enderle P, Varbanov P (2015) Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. J Clean Prod 88:125-131. https://doi.org/10.1016/j.jclepro.2014.08.068 otwiera się w nowej karcie
  119. NYSERDA (2010) Water & wastewater energy management, best practices handbook. In: NewYork state energy research & development authority. pp 32-39 otwiera się w nowej karcie
  120. OCHSNER (2012) Waste water as heat source of heat pump. REHVA J 2012. p 63. http://www.ochsner.com. Accessed 14 May 2018 otwiera się w nowej karcie
  121. Olive N (2002) Design of a chemically enhanced primary treatment plant for the City of Alfenas, Minas, Gerais. Massachusetts Institute of Technology, Boston
  122. Olsson G (2012) ICA and me-a subjective review. Water Res 46:1585-1624. https://doi.org/10.1016/j.watres.2011.12. 054 otwiera się w nowej karcie
  123. Panepinto D, Fiore S, Zappone M et al (2016) Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Appl Energy 161:404-411. https://doi.org/10.1016/j. apenergy.2015.10.027 otwiera się w nowej karcie
  124. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35-42. https://doi.org/10.1016/j.biortech. 2010.06.158 otwiera się w nowej karcie
  125. Parry D (2014) Power positive resource recovery. Biocycle 55:45. https://www.biocycle.net/2014/08/14/power- positive-resource-recovery. Accessed 21 Mar 2018
  126. Philipon P (2015) Frequency variation: from energy savings to the smart plant. [Variation de fréquence: Des économies d'énergie]. otwiera się w nowej karcie
  127. Eau, l'INDUSTRIE, les Nuisances 69-79
  128. Piao W, Kim Y, Kim H et al (2016) Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants. J Clean Prod 113:325-337. https://doi.org/10.1016/j.jclepro.2015.11.012 otwiera się w nowej karcie
  129. Pittoors E, Guo Y, Van Hulle SWH (2014) Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge pro- cesses: a review. Chem Eng Commun 201:983-1002. https://doi.org/10.1080/00986445.2014.883974 otwiera się w nowej karcie
  130. Polruang S, Sirivithayapakorn S, Prateep Na Talang R (2018) A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. J Clean Prod 172:635-648. https://doi.org/10.1016/J.JCLEPRO.2017. 10.183 otwiera się w nowej karcie
  131. Poole AL (2012) Comparison of ammonia and DO aeration control strategies to optimize energy and performance at low capital cost: a case study. In: WEFTEC annual con- ference. New Orleans Power C, McNabola A, Coughlan P (2014) Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: case studies in Ireland and the UK. Sustain Energy Technol Assess 7:166-177. https:// doi.org/10.1016/j.seta.2014.06.001 otwiera się w nowej karcie
  132. Powerstep Approach|Powerstep. http://powerstep.eu/what-s- powerstep/approach
  133. Qi Y (2013) A national survey of biogas use at wastewater treatment plants in the United States: the results. In: Pro- ceedings of the water environment federation. WEF otwiera się w nowej karcie
  134. Rabaey K, Rodríguez J, Blackall LL et al (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9-18. https://doi.org/10. 1038/ismej.2007.4 otwiera się w nowej karcie
  135. Raheem A, Prinsen P, Vuppaladadiyam AK et al (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42-59. https://doi.org/10.1016/J.JCLEPRO.2018.01. 125 otwiera się w nowej karcie
  136. Rahimnejad M, Adhami A, Darvari S et al (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745-756. https://doi.org/10.1016/J. AEJ.2015.03.031 otwiera się w nowej karcie
  137. Regmi P, Miller MW, Holgate B et al (2014) Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res 57:162-171. https:// doi.org/10.1016/j.watres.2014.03.035 otwiera się w nowej karcie
  138. Regmi P, Holgate B, Fredericks D et al (2015) Optimization of a mainstream nitritation-denitritation process and anammox polishing. Water Sci Technol 72:632. https://doi.org/10. 2166/wst.2015.261 otwiera się w nowej karcie
  139. Remy C, Lesjean B, Waschnewski J (2013) Identifying energy and carbon footprint optimization potentials of a sludge treatment line with life cycle assessment. Water Sci Technol 67:63-73. https://doi.org/10.2166/wst.2012.529 otwiera się w nowej karcie
  140. Remy C, Boulestreau M, Lesjean B (2014) Proof of concept for a new energy-positive wastewater treatment scheme. Water Sci Technol 70:1709. https://doi.org/10.2166/wst. 2014.436 otwiera się w nowej karcie
  141. Rieger L (2012) Myths about ammonia feedforward aeration control. In: Proceedings of the water environment federa- tion, pp 2483-2502 otwiera się w nowej karcie
  142. Rieger L, Jones RM, Dold PL, Bott CB (2014) Ammonia-based feedforward and feedback aeration control in activated sludge processes. Water Environ Res 86:63-73. https://doi. org/10.2175/106143013X13596524516987 otwiera się w nowej karcie
  143. Rodriguez-Caballero A, Aymerich I, Marques R et al (2015) Minimizing N 2 O emissions and carbon footprint on a full- scale activated sludge sequencing batch reactor. Water Res 71:1-10. https://doi.org/10.1016/j.watres.2014.12.32 otwiera się w nowej karcie
  144. Rosso D, Larson LE, Stenstrom MK (2008) Aeration of large- scale municipal wastewater treatment plants: state of the art. Water Sci Technol 57:973-978. https://doi.org/10. 2166/wst.2008.218 otwiera się w nowej karcie
  145. Rothausen SGSA, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nat Clim Change 1:210-219. https://doi.org/10.1038/Nclimate1147 otwiera się w nowej karcie
  146. Rozendal RA, Hamelers HVM, Rabaey K et al (2008) Towards practical implementation of bioelectrochemical wastewa- ter treatment. Trends Biotechnol 26:450-459. https://doi. org/10.1016/j.tibtech.2008.04.008 otwiera się w nowej karcie
  147. R3water R3water|Reuse, Recovery and resource efficiency, innovations in urban wastewater treatment. http://r3water. eu/ Sadowski MS (2015) Comparison of aeration strategies for optimization of nitrogen removal in an adsorption/bio-ox- idation process with an emphasis on ammonia vs. NOx control. Master of Science, thesis, Virginia Polytechnic Institute and State University Saghafi S, Mehrdadi N, Bid Hendy GN, Rad HA (2016) Esti- mating the electrical energy in different processes for Nasir Abad industrial wastewater treatment plant with emphasis on COD removal. J Environ Stud 42:4-6 otwiera się w nowej karcie
  148. Sala-Garrido R, Molinos-Senante M, Hernández-Sancho F (2011) Comparing the efficiency of wastewater treatment technologies through a DEA metafrontier model. Chem Eng J 173:766-772. https://doi.org/10.1016/j.cej.2011.08. 047 otwiera się w nowej karcie
  149. Sala-Garrido R, Hernández-Sancho F, Molinos-Senante M (2012) Assessing the efficiency of wastewater treatment plants in an uncertain context: a DEA with tolerances approach. Environ Sci Policy 18:34-44. https://doi.org/10. 1016/j.envsci.2011.12.012 otwiera się w nowej karcie
  150. Sanchez F, Rey H, Viedma A et al (2018) CFD simulation of fluid dynamic and biokinetic processes whithin activated sludge reactors under intermittent aeration regime. Water Res 139:47-57. https://doi.org/10.1016/j.watres.2018.03. 067 otwiera się w nowej karcie
  151. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sour 356:225-244. https://doi.org/10.1016/J. JPOWSOUR.2017.03.109 otwiera się w nowej karcie
  152. Santos-Ballardo DU, Rossi S, Reyes-Moreno C, Valdez-Ortiz A (2016) Microalgae potential as a biogas source: current status, restraints and future trends. Rev Environ Sci Biotechnol 15:243-264. https://doi.org/10.1007/s11157- 016-9392-z otwiera się w nowej karcie
  153. Schaubroeck T, De Clippeleir H, Weissenbacher N et al (2015) Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res 74:166-179. https://doi.org/ 10.1016/j.watres.2015.02.013 otwiera się w nowej karcie
  154. Scherson YD, Wells GF, Woo S-G et al (2013) Nitrogen removal with energy recovery through N 2 O decomposi- tion. Energy Environ Sci 6:241-248. https://doi.org/10. 1039/C2EE22487A otwiera się w nowej karcie
  155. Scherson YD, Woo S-G, Criddle CS (2014) Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. Environ Sci Technol 48:5612-5619. https://doi.org/10.1021/ es501009j otwiera się w nowej karcie
  156. Seuntjens D, Han M, Kerckhof F-M et al (2018) Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. Water Res 138:37-46. https://doi.org/10.1016/J.WATRES.2017.11. 044 otwiera się w nowej karcie
  157. Shizas I, Bagley DM (2004) Experimental Determination of energy content of unknown organics in municipal wastewater streams. J Energy Eng. https://doi.org/10.1061/ (ASCE)0733-9402(2004)130:2(45) otwiera się w nowej karcie
  158. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal bio- diesel sustainable. Biotechnol Adv 27:409-416. https:// doi.org/10.1016/j.biotechadv.2009.03.001 otwiera się w nowej karcie
  159. Siegrist H, Salzgeber D, Eugster J, Joss A (2008) Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-re- moval. Water Sci Technol 57:383-388. https://doi.org/10. 2166/wst.2008.048 otwiera się w nowej karcie
  160. Singh P, Kansal A, Carliell-Marquet C (2016) Energy and car- bon footprints of sewage treatment methods. J Environ Manag 165:22-30. https://doi.org/10.1016/J.JENVMAN. 2015.09.017 otwiera się w nowej karcie
  161. Skorkowski L, Zielewicz E, Kawczynski A et al (2018) Assessment of excess sludge ultrasonic, mechanical and hybrid pretreatment in relation to the energy parameters. Water 10:551. https://doi.org/10.3390/w10050551 otwiera się w nowej karcie
  162. Smith R (2013) How to control activated sludge with online sensors. In: YSI Inc. http://blog.ysi.com/how-to-control- activated-sludge-with-online-sensors. Accessed 7 Feb 2018
  163. Soliman M, Eldyasti A (2016) Development of partial nitrifi- cation as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime. Bioresour Technol 221:85-95. https://doi.org/10.1016/j.biortech.2016.09.023 otwiera się w nowej karcie
  164. Solon K, Flores-Alsina X, Kazadi Mbamba C et al (2017) Plant- wide modelling of phosphorus transformations in wastewater treatment systems: impacts of control and operational strategies. Water Res 113:97-110. https://doi. org/10.1016/J.WATRES.2017.02.007 otwiera się w nowej karcie
  165. Spinosa L, Ayol A, Baudez J et al (2011) Sustainable and innovative solutions for sewage sludge management. Water 3:702-717. https://doi.org/10.3390/w3020702 otwiera się w nowej karcie
  166. Stone L, Kuchenrither R, Quintanilla A et al (2010) Renewable energy resources: banking on biosolids. National associa- tion of clean water agencies (NACWA) otwiera się w nowej karcie
  167. Suslick KS, Eddingsaas NC, Flannigan DJ et al (2011) Extreme conditions during multibubble cavitation: sonolumines- cence as a spectroscopic probe. Ultrason Sonochem 18:842-846. https://doi.org/10.1016/j.ultsonch.2010.12. 012 otwiera się w nowej karcie
  168. Tartakovsky B, Kleiner Y, Manuel M-F (2017) Bioelectro- chemical anaerobic sewage treatment technology for Arctic communities. Environ Sci Pollut Res. https://doi. org/10.1007/s11356-017-8390-1 otwiera się w nowej karcie
  169. Tchobanoglous G (2009) Impacts of new concepts and tech- nology on the energy sustainability of wastewater man- agement. Proceedings of 3rd Conference on Climate Change, Sustainable Development, and Renewable Energy Sources. 15-17 October 2009, Thessaloniki, Greece The European IPPC Bureau (2002) Integrated pollution pre- vention and control, reference document on best available techniques in common waste water and waste gas treat- ment/management systems in the chemical sector. http:// infohouse.p2ric.org/ref/21/20554.pdf. Accessed 14 May 2018
  170. The Hong Kong University of Science and Technology R and DC (2013) Report No. RD 2071 pilot trial of membrane enhanced primary treatment (MEPT) process (Final Report) otwiera się w nowej karcie
  171. Tomlinson J (2005) Heat recovery from wastewater using a gravity-film heat exchanger. In: Federal energy manage- ment program. Oak Ridge National Laboratory Torregrossa D, Schutz G, Cornelissen A et al (2016) Energy saving in WWTP: daily benchmarking under uncertainty and data availability limitations. Environ Res 148:330-337. https://doi.org/10.1016/j.envres.2016.04. otwiera się w nowej karcie
  172. Torregrossa D, Hernández-Sancho F, Hansen J et al (2018) Energy saving in wastewater treatment plants: a plant- generic cooperative decision support system. J Clean Prod 167:601-609. https://doi.org/10.1016/j.jclepro.2017.08. 181 otwiera się w nowej karcie
  173. Trojanowicz K (2016) Energetyczna utylizacja biogazu jako element gospodarki osadowej w oczyszczalni ścieków w Krośnie. Forum Eksploatatora 46-53
  174. Tyagi VK, Lo S-L (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Bio Technol 10:215-242. https://doi.org/ 10.1007/s11157-011-9244-9 otwiera się w nowej karcie
  175. Tyagi VK, Lo SL (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev 25:708-728. https://doi.org/10.1016/j.rser.2013.05. 029 otwiera się w nowej karcie
  176. U.S. Municipal Solid Waste Sector Action Plan (2013). https:// www.globalmethane.org/documents/landfills_cap_usa. pdf. Accessed 15 Nov 2017 otwiera się w nowej karcie
  177. USDOE (2005) Onondaga county department of water envi- ronment protection: process optimization saves energy at metropolitan syracuse wastewater treatment plant. http:// www.infohouse.p2ric.org/ref/40/39671.pdf. Accessed 15 Nov 2017 otwiera się w nowej karcie
  178. Van Horne MP, Rohrbacher J, Pitt P (2013) Coming full circle: moving wastewater treatment plants toward energy neu- trality. Florida Water Resour J. https://doi.org/10.2175/ 193864712811703739 otwiera się w nowej karcie
  179. Walker ME, Lv Z, Masanet E (2013) Industrial steam systems and the energy-water nexus. Environ Sci Technol 47:13060-13067. https://doi.org/10.1021/es403715z otwiera się w nowej karcie
  180. Wang W, Luo Y, Qiao W (2010) Possible solutions for sludge dewatering in China. Front Environ Sci Eng China 4:102-107. https://doi.org/10.1007/s11783-010-0001-z otwiera się w nowej karcie
  181. Wang H, Park J-D, Ren ZJ (2015) Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol 49:3267-3277. https://doi.org/10.1021/es5047765 otwiera się w nowej karcie
  182. Wang H, Yang Y, Keller AAA et al (2016) Comparative anal- ysis of energy intensity and carbon emissions in wastew- ater treatment in USA, Germany, China and South Africa. Appl Energy 184:873-881. https://doi.org/10.1016/j. apenergy.2016.07.061 otwiera się w nowej karcie
  183. Water Environmental Federation, American Society of Civil Engineers (2010) Design of municipal wastewater treat- ment plants. WEF Manual of practice no.8, ASCE manuals and reports on engineering practice no. 76, Fifth edition. http://www.wefnet.org/ewef/images/mop8/mop8_ frontmatter.pdf. Accessed 7 Feb 2017 otwiera się w nowej karcie
  184. WEF (2009) Energy conservation in water and wastewater facilities, WEF Manual of Practice No. 32, 601 Wythe Street Alexandria, VA 22314-1994 otwiera się w nowej karcie
  185. Wei W, Zhou X, Wang D et al (2017) Free ammonia pre- treatment of secondary sludge significantly increases anaerobic methane production. Water Res 118:12-19. https://doi.org/10.1016/j.watres.2017.04.015 otwiera się w nowej karcie
  186. Wei W, Wang Q, Zhang L et al (2018) Free nitrous acid pre- treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Res 130:13-19. https://doi.org/10.1016/j.biortech.2014.11.054 otwiera się w nowej karcie
  187. Weiland P (2010) Biogas production: current state and per- spectives. Appl Microbiol Biotechnol 85:849-860 otwiera się w nowej karcie
  188. Weißbach M, Thiel P, Drewes JE, Koch K (2018) Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions. Bioresour Technol 255:58-66. https://doi.org/10.1016/J. BIORTECH.2018.01.080 otwiera się w nowej karcie
  189. WERF (2011) Energy production and efficiency research-the roadmap to net-zero energy, VA. pp 1-8
  190. WERF (2015a) Demonstrated energy nuetrality leadership: a study of five champions of change, Water Envvironment Reseearch Foundatioon 635 Slaters Lane, Suite GG-110
  191. Alexandriaa, VA 22314-1177, https://www.werf.org/a/ka/ Search/ResearchProfile.aspx?ReportId=ENER1C12b. Accessed 21 Mar 2017
  192. WERF (2015b) Mainstream deammonification. ISBN:9781780407852 otwiera się w nowej karcie
  193. Whiting A, Azapagic A (2014) Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 70:181-193. https://doi.org/10.1016/j.energy.2014.03.103 otwiera się w nowej karcie
  194. Willis J, Stone L, Durden K et al (2012) Barriers to biogas use for renewable energy. Water Environ Res Found Wojtowicz A, Jedrzejewski C, Bieniowski M, Darul H (2013) Modelowe rozwiazania w gospodarce osadowej. Izba Gospodarcza, Polish Waterworks, pp 440-441 otwiera się w nowej karcie
  195. Xu G, Chen S, Shi J et al (2010) Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J Hazard Mater 180:340-346. https://doi.org/10.1016/J. JHAZMAT.2010.04.036 otwiera się w nowej karcie
  196. Xu J, Li Y, Wang H et al (2017) Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China. Energy Procedia 142:3055-3061. https://doi.org/10.1016/j.egypro.2017.12.444 otwiera się w nowej karcie
  197. Yan P, Qin RC, Guo JS et al (2017) Net-zero-energy model for sustainable wastewater treatment. Environ Sci Technol 51:1017-1023. https://doi.org/10.1021/acs.est.6b04735 otwiera się w nowej karcie
  198. Yang Z, Pei H, Hou Q et al (2018) Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treat- ment: nutrient, organics removal and bioenergy produc- tion. Chem Eng J 332:277-285. https://doi.org/10.1016/J. CEJ.2017.09.096 otwiera się w nowej karcie
  199. Yeshi C (2015) Measured data based mass balance and energy efficiency of an 800,000 m 3 /day water reclamation plant in Singapore. In: 12th IWA specialised conference on design, operation and economics of large wastewater treatment plants. IWA, Prauge, pp 93-99
  200. Zaborowska E, Czerwionka K, Makinia J (2017) Strategies for achieving energy neutrality in biological nutrient removal systems-a case study of the Slupsk WWTP (northern Poland). Water Sci Technol 75:727-740. https://doi.org/ 10.2166/wst.2016.564 otwiera się w nowej karcie
  201. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149-1158. https://doi.org/10.1016/j.biortech.2010. 09.017 otwiera się w nowej karcie
  202. Zettl U (2015) WWTP stuttgart-Mühlhausen-changeover to air distribution control system (ADC). In: 12th IWA spe- cialised conference on design, operation and economics of large wastewater treatment plants. IWA, Prague, pp 108-110
  203. Zou Y, Xu X, Li L et al (2018) Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresour Technol 254:83-90. https://doi.org/10.1016/j. biortech.2017.12.054 otwiera się w nowej karcie
  204. _ Zubrowska-Sudoł M, Podedworna J, Bisak A et al (2017) Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants. In: E3S Web Conf 22:00208. https://doi.org/10. 1051/e3sconf/20172200208 otwiera się w nowej karcie
  205. Zylstra GJ, Kukor JJ (2005) What is environmental biotech- nology? Curr Opin Biotechnol 16:243-245. https://doi.org/ 10.1016/J.COPBIO.2005.05.001 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 387 razy

Publikacje, które mogą cię zainteresować

Meta Tagi