Analysis of Vibration and Acoustic Signals for Noncontact Measurement of Engine Rotation Speed - Publikacja - MOST Wiedzy

Wyszukiwarka

Analysis of Vibration and Acoustic Signals for Noncontact Measurement of Engine Rotation Speed

Abstrakt

The non-contact measurement of engine speed can be realized by analyzing engine vibration frequency. However, the vibration signal is distorted by harmonics and noise in the measurement. This paper presents a novel method for the measurement of engine rotation speed by using the cross-correlation of vibration and acoustic signals. This method can enhance the same frequency components in engine vibration and acoustic signal. After cross-correlation processing, the energy centrobaric correction method is applied to estimate the accurate frequency of the engine’s vibration. This method can be implemented with a low-cost embedded system estimating the cross-correlation. Test results showed that this method outperformed the traditional vibration-based measurement method.

Cytowania

  • 3

    CrossRef

  • 2

    Web of Science

  • 2

    Scopus

Autorzy (5)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 26 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 20, strony 1 - 10,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Xuansheng S., Lu T., Wen H., Martinek R., Smulko J.: Analysis of Vibration and Acoustic Signals for Noncontact Measurement of Engine Rotation Speed// SENSORS -Vol. 20,iss. 3 (2020), s.1-10
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s20030683
Bibliografia: test
  1. Gustafsson, F. Rotational Speed Sensors: Limitations, Pre-processing and Automotive Applications Part 23 in a Series of Tutorials on Instrumentation and Measurement. IEEE Instrum. Meas. Mag. 2010, 13, 16-23. [CrossRef] otwiera się w nowej karcie
  2. Arif, S.J.; Asghar, M.S.J.; Sarwar, A. Measurement of Speed and Calibration of Tachometers Using Rotating Magnetic Field. IEEE Trans. Instrum. Meas. 2014, 63, 848-858. [CrossRef] otwiera się w nowej karcie
  3. Chicharro, J.M.; Morales, A.L.; Moreno, R.; Nieto, A.J.; Pintado, P. Sensorless automotive engine speed measurement by noise analysis. In Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga, Spain, 14-17 April 2009; pp. 1-4. otwiera się w nowej karcie
  4. Jia-Dong, Z.; Guang-Yao, O.; Hong-Bin, G. Demodulation of instantaneous rotational speed of diesel engine based on Hilbert transform. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16-19 August 2009; pp. 2-753-2-756. otwiera się w nowej karcie
  5. Kepak, S.; Stolarik, M.; Nedoma, J.; Martinek, R.; Kolarik, J.; Pinka, M. Alternative Approaches to Vibration Measurement Due to the Blasting Operation: A Pilot Study. Sensors 2019, 19, 4084. [CrossRef] [PubMed] otwiera się w nowej karcie
  6. Nedoma, J.; Stolarik, M.; Kepak, S.; Pinka, M.; Martinek, R.; Frnda, J.; Fridrich, M. Alternative Approaches to Measurement of Ground Vibrations Due to the Vibratory Roller: A Pilot Study. Sensors 2019, 19, 5420. [CrossRef] [PubMed] otwiera się w nowej karcie
  7. Santacruz, M.; Felix, M.; Ocampo, J.; Luna, G. Vibration Frequency Peak Detection and Sorting Technique for Passenger Vehicles. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference, Minneapolis, MN, USA, 6-9 May 2013; pp. 1353-1357. otwiera się w nowej karcie
  8. Amman, S.A.; Das, M. An efficient technique for modeling and synthesis of automotive engine sounds. IEEE Trans. Ind. Electron. 2001, 48, 225-234. [CrossRef] otwiera się w nowej karcie
  9. Belouchrani, A.; Amin, M.G. Time-frequency MUSIC. IEEE Signal Process. Lett. 1999, 6, 109-110. [CrossRef] otwiera się w nowej karcie
  10. Zhang, J.; Tang, L.; Mingotti, A.; Peretto, L.; Wen, H. Analysis of White Noise on Power Frequency Estimation by DFT-based Frequency Shifting and Filtering Algorithm. IEEE Trans. Instrum. Meas. 2019. [CrossRef] otwiera się w nowej karcie
  11. Zhang, J.; Wen, H.; Tang, L. Improved Smoothing Frequency Shifting and Filtering Algorithm for Harmonic Analysis With Systematic Error Compensation. IEEE Trans. Ind. Electron. 2019, 66, 9500-9509. [CrossRef] otwiera się w nowej karcie
  12. Marple, S.L. Digital Spectral Analysis With Applications;
  13. Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1987; Volume 1. otwiera się w nowej karcie
  14. Miao, Q.A.; Cong, L.; Pecht, M. Identification of multiple characteristic components with high accuracy and resolution using the zoom interpolated discrete Fourier transform. Meas. Sci. Technol. 2011, 22, 055701. [CrossRef] otwiera się w nowej karcie
  15. Kaminsky, D.; Zidek, J.; Bilik, P. Virtual instrumentation based power quality analyzer. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, 15-17 September 2011; pp. 184-187. otwiera się w nowej karcie
  16. Wen, H.; Li, C.; Yao, W. Power System Frequency hstimation of Sine-Wave Corrupted With Noise by Windowed Three-Point Interpolated DFT. IEEE Trans. Smart Grid 2018, 9, 5163-5172. [CrossRef] otwiera się w nowej karcie
  17. Wen, H.; Zhang, J.; Meng, Z.; Guo, S.; Li, F.; Yang, Y. Harmonic Estimation Using Symmetrical Interpolation FFT Based on Triangular Self-Convolution Window. IEEE Trans. Ind. Inform. 2015, 11, 16-26. [CrossRef] otwiera się w nowej karcie
  18. Wen, H.; Kish, L.B.; Klappenecker, A.; Peper, F. New noise-based logic representations to avoid some problems with time complexity. Fluct. Noise Lett. 2012, 11. [CrossRef] otwiera się w nowej karcie
  19. Lindfors, M.; Hendeby, G.; Gustafsson, F.; Karlsson, R.; IEEE. Vehicle Speed Tracking Using Chassis Vibrations. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 19-22 June 2016; otwiera się w nowej karcie
  20. Amarnath, M.; Krishna, I.R.P. Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis. Measurement 2014, 58, 154-164. [CrossRef] otwiera się w nowej karcie
  21. Adamczak, S.; Janecki, D.; Makiela, W.; Stepien, K. Quantitative comparison of cylindricity profiles measured with different methods using legendre-fourier coefficients. Metrol. Meas. Syst. 2010, 17, 397-403. [CrossRef] otwiera się w nowej karcie
  22. Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320-327. [CrossRef] otwiera się w nowej karcie
  23. Combet, F.; Gelman, L. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor. Mech. Syst. Signal Process. 2007, 21, 2590-2606. [CrossRef] otwiera się w nowej karcie
  24. Song, X.; Li, X.; Zhang, W.G.; Zhou, W. The new measurement algorithm of the engine speed base on the basic frequency of vibration signal. In Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 24-26 August 2010; pp. 273-277. otwiera się w nowej karcie
  25. Cevher, V.; Chellappa, R.; McClellan, J.H. Vehicle Speed Estimation Using Acoustic Wave Patterns. IEEE Trans. Signal Process. 2009, 57, 30-47. [CrossRef] otwiera się w nowej karcie
  26. Oppenheim, A.V.; Willsky, A.S. Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1983; p. xix+796.
  27. Yan, H.; Joy, D.; Lei, M. Convolution and correlation: A case study of scanning imaging and analysis systems. Scanning 2002, 24, 6-17. [CrossRef] [PubMed] otwiera się w nowej karcie
  28. Liu, H.F.; Liu, H.Y.; Zhang, T.T.; Li, J.C. Application of Cross-correlation Algorithm in Radio Weak Signal Detection. In Proceedings of the 7th Annual Communication Networks And Services Research Conference, Moncton, NB, Canada, 11-13 May 2009; pp. 440-442. otwiera się w nowej karcie
  29. Offelli, C.; Petri, D. A frequency-domain procedure for accurate real-time signal parameter measurement. IEEE Trans. Instrum. Meas. 1990, 39, 363-368. [CrossRef] otwiera się w nowej karcie
  30. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 53 razy

Publikacje, które mogą cię zainteresować

Meta Tagi