Assessing vehicle restraint systems on horizontal curves - Publikacja - MOST Wiedzy


Assessing vehicle restraint systems on horizontal curves


Horizontal curves, an element of road infrastructure, have a statistically high number of accidents. Considering that horizontal curves in the last ten years have had app. 10% of all road accidents representing app. 14% of all fatalities on Polish roads, the issue is serious and requires more research and proper road safety treatments. Data for 2007 - 2016 show that in the case of accidents on horizontal curves app. 45% of the fatalities happened as a result of crashing into roadside obstacles such as signs and first of all trees. This shows that horizontal curves require road safety equipment, and specifically, safety barriers. Key to this is using the right equipment and the right parameters. To achieve that, full-scale crash tests should be conducted to be followed by numerical tests. The article will present a synthesis of the available research conducted in Poland and abroad. An assessment will be made of four crash tests of TB32 with barriers that have a steel and cable guardrail. They are the outcome of the RID 3A "Road safety equipment" project called RoSE. Building on these tests, numerical test results will be presented


  • 1


  • 0

    Web of Science

  • 1


Cytuj jako

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
MATEC Web of Conferences nr 231, strony 1 - 8,
ISSN: 2261-236X
Rok wydania:
Opis bibliograficzny:
Budzyński M., Bruski D.: Assessing vehicle restraint systems on horizontal curves// MATEC Web of Conferences -Vol. 231, (2018), s.1-8
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1051/matecconf/201823101004
Bibliografia: test
  1. R. Fuller, Towards a general theory of driver behaviour, Accid. Anal. Prev. 37 pp. 461-72 (2005). doi:10.1016/j.aap.2004.11.003 otwiera się w nowej karcie
  2. P. Larsson, S.W.A. Dekker, C. Tingvall, The need for a systems theory approach to road safety, Saf. Sci. 48 pp. 1167-1174 (2010). doi:10.1016/j.ssci.2009.10.006 otwiera się w nowej karcie
  3. D.W. Harwood, F.M. Council, E. Hauer, W.E. Hughes, A. Vogt, Prediction of the Expected Safety Performance of Rural Two-Lane Highways (Federal Highway Administration U.S. Department of Transportation, 2000)
  4. Road protection score (RPS) method and pilot results (EuroRAP, 2002) otwiera się w nowej karcie
  5. W. Kustra, K. Jamroz, M. Budzynski, Safety PL-A Support Tool for Road Safety Impact Assessment, Transp. Res. Procedia. 14 pp. 3456-3465 (2016). doi:10.1016/J.TRPRO.2016.05.308 otwiera się w nowej karcie
  6. MATEC Web of Conferences 231, 01004 (2018) GAMBIT 2018 otwiera się w nowej karcie
  7. A. Fernandes, J. Neves, An approach to accidents modeling based on compounds road environments, Accid. Anal. Prev. 53 pp. 39-45 (2013). doi:10.1016/j.aap.2012.12.041 otwiera się w nowej karcie
  8. S. Cafiso, A. Di Graziano, G. Di Silvestro, G. La Cava, B. Persaud, Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables, Accid. Anal. Prev. 42 pp. 1072-1079 (2010). doi:10.1016/j.aap.2009.12.015 otwiera się w nowej karcie
  9. J.N. Ivan, P.E. Garder, Z. Deng, C. Zhang, The effect of segment characteristics on the severity of head-on crashes on two-lane rural highways (University of Connecticut, University of Maine, 2006)
  10. M. Garnowski, H. Manner, On factors related to car accidents on German Autobahn connectors, Accid. Anal. Prev. 43 pp. 1864-1871 (2011). doi:10.1016/J.AAP.2011.04.026 otwiera się w nowej karcie
  11. J. Lee, F. Mannering, Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis, Accid. Anal. Prev. 34 pp. 149-161 (2002). doi:10.1016/S0001-4575(01)00009-4 otwiera się w nowej karcie
  12. Accident modification factors (Federal Highway Administration, U.S. Department of Transportation, 2005) otwiera się w nowej karcie
  13. C. Wang, M.A. Quddus, S.G. Ison, Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model, Accid. Anal. Prev. 43 pp. 1979-1990 (2011). doi:10.1016/J.AAP.2011.05.016 otwiera się w nowej karcie
  14. A. Jacob, R. Dhanya, M.V.L.R. Anjaneyulu, Geometric Design Consistency of Multiple Horizontal Curves on Two-lane Rural Highways, Procedia -Soc. Behav. Sci. 104 pp. 1068-1077 (2013). doi:10.1016/J.SBSPRO.2013.11.202 otwiera się w nowej karcie
  15. M.A. Abdel-Aty, A.E. Radwan, Modeling traffic accident occurrence and involvement, Accid. Anal. Prev. 32 pp. 633-642 (2000). doi:10.1016/S0001- 4575(99)00094-9 otwiera się w nowej karcie
  16. M.F. Muhammad, H.J. Mohammed, Concrete road barriers subjected to impact loads: An overview, Lat. Am. J. Solids Struct. 12 pp. 1824-1858 (2015). doi:10.1590/1679- 78251783 otwiera się w nowej karcie
  17. S. Mondal, Y. Lucet, W. Hare, Optimizing horizontal alignment of roads in a specified corridor, Comput. Oper. Res. 64 pp. 130-138 (2015). doi:10.1016/J.COR.2015.05.018 otwiera się w nowej karcie
  18. A Guide for Reducing Collisions on Horizontal Curves. NCHRP Report 500(7) (Transportation Research Board, Washington, D.C., 2004). doi:10.17226/13545 otwiera się w nowej karcie
  19. S. Othman, R. Thomson, G. Lannér, Safety Analysis of Horizontal Curves Using Real Traffic Data, J. Transp. Eng. 140 pp. 04014005 (2014). doi:10.1061/(ASCE)TE.1943- 5436.0000626 otwiera się w nowej karcie
  20. C. Jurewicz, R. Excel, Application of a Crash-predictive Risk Assessment Model to Prioritise Road Safety Investment in Australia, Transp. Res. Procedia. 14 pp. 2101- 2110 (2016). doi:10.1016/J.TRPRO.2016.05.225 otwiera się w nowej karcie
  21. G. Yannis, A. Dragomanovits, A. Laiou, T. Richter, S. Ruhl, F. La Torre, L. Domenichini, D. Graham, N. Karathodorou, H. Li, Use of Accident Prediction Models in Road Safety Management -An International Inquiry, Transp. Res. Procedia. 14 pp. 4257-4266 (2016). doi:10.1016/J.TRPRO.2016.05.397 otwiera się w nowej karcie
  22. T. Esposito, R. Mauro, F. Russo, G. Dell'Acqua, Speed prediction models for sustainable road safety management, Procedia -Soc. Behav. Sci. 20 pp. 568-576 (2011). doi:10.1016/J.SBSPRO.2011.08.063 otwiera się w nowej karcie
  23. M. Klasztorny, K. Zielonka, D.B. Nycz, P. Posuniak, R. Romanowski, Experimental and simulation crash tests of the SP-05/2 barrier in the concave horizontal curve, in: XIV Sci. Tech. Conf. Comput. Technol. Eng., (2016) otwiera się w nowej karcie
  24. R.P. Nasution, R.A. Siregar, K. Fuad, A.H. Adom, The Effect of ASI (Acceleration Severity Index) to Different Crash Velocities, in: Proc. Int. Conf. Appl. Des. Mech. Eng., pp. 11-13 (2009)
  25. W. Borkowski, Z. Hryciów, P. Rybak, J. Wysocki, Analysis of the effectiveness of concrete protection barriers on the road curve, Mech. Rev. LXXI pp. 21-24 (2012) otwiera się w nowej karcie
  26. D. Nycz, Modeling and numerical tests of crash tests of N2-W4-A class barriers on road curves, Military University of Technology, Warsaw, 2015 otwiera się w nowej karcie
  27. D. Marzougui, U. Mahadevaiah, F. Tahan, C.D. Kan, R. McGinnis, R. Powers, Guidance for selection, use and maintenance of cable barrier system. NCHRP Raport 711 (Transport Research Board, Washington, USA, 2012) otwiera się w nowej karcie
  28. PN-EN 1317-1 Road restraint systems, Part 1: Terminology and general criteria for test methods, (2010) otwiera się w nowej karcie
  29. PN-EN 1317-2 Road restraint systems, Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers (2010) otwiera się w nowej karcie
  30. J.O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technology Corporation, 2006)
  31. MATEC Web of Conferences 231, 01004 (2018) GAMBIT 2018 otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi