Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core - Publikacja - MOST Wiedzy

Wyszukiwarka

Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core

Abstrakt

Based on the equivalent single-layer linear theory for laminated shells, free and forced vibrations of thin cylindrical sandwich panels with magnetorheological core are studied. Five variants of available magnetorheological elastomers differing in their composition and physical properties are considered for smart viscoelastic core. Coupled differential equations in terms of displacements based on the generalized kinematic hypotheses of Timoshenko accounting for transverse shears with coefficients depending on the complex shear modulus for a smart core are used to govern vibrations of cylindrical panels. Assuming conditions of simple support for straight and curvilinear edges, solutions in the explicit form describing natural modes as well as an equation with respect to the required complex eigenfrequencies are found. To predict the shell response to an external harmonic force, the general solution of non-homogeneous governing equations is derived in the form of series in natural modes. To estimate damping capability of magnetorheological elastomers under consideration, the principle tunable parameters, the lowest natural frequencies and associated logarithmic decrements are calculated for the same panels with different magnetorheological elastomers under the action of a magnetic field of different intensities. Finally, the amplitude–frequency plots for magnetorheological elastomer-based panels of different opening angles with and without magnetic field are presented.

Cytowania

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 111 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (The Author(s) 2019)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES nr 30, strony 2748 - 2769,
ISSN: 1045-389X
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Mikhasev G., Eremeev V., Wilde K., Maevskaya S.: Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core// JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES -Vol. 30,iss. 18-19 (2019), s.2748-2769
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1177/1045389x19873423
Bibliografia: test
  1. Abdeljaber O, Avci O and Inman DJ (2016) Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. Journal of Sound and Vibration 363(17): 33-53. otwiera się w nowej karcie
  2. Aguib S, Nour A, Djedid T, et al. (2016) Forced transverse vibration of composite sandwich beam with magnetorheo- logical elastomer core. Journal of Mechanical Science and Technology 30(1): 15-24. otwiera się w nowej karcie
  3. Aguib S, Nour A, Zahloul H, et al. (2014) Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. International Journal of Mechanical Sciences 87: 118-136. otwiera się w nowej karcie
  4. Altenbach H (2000) An alternative determination of trans- verse shear stiffnesses for sandwich and laminated plates. International Journal of Solids and Structures 37(25): 3503-3520. otwiera się w nowej karcie
  5. Altenbach H, Brigadnov IA and Eremeyev VA (2008) Oscilla- tions of a magneto-sensitive elastic sphere. Journal of Applied Mathematics and Mechanics 88(6): 497-506. otwiera się w nowej karcie
  6. Altenbach H, Eremeyev VA and Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. Journal of Applied Mathematics and Mechanics 95(10): 1004-1011. otwiera się w nowej karcie
  7. Arau´jo AL, Carvalho VS, Soares CMM, et al. (2016) Vibra- tion analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators. Composite Structures 151: 91-98.
  8. Babu VR and Vasudevan R (2016) Dynamic analysis of tapered laminated composite magnetorheological elasto- mer (MRE) sandwich plates. Smart Materials and Struc- tures 25(3): 035006. otwiera się w nowej karcie
  9. Ballhause D, D'Ottavio M, Kro¨plin B, et al. (2005) A unified formulation to assess multilayered theories for piezoelec- tric plates. Computers & Structures 83(15-16): 1217-1235. otwiera się w nowej karcie
  10. Bica I, Anitas EM, Bunoiu M, et al. (2014) Hybrid magnetor- heological elastomer: influence of magnetic field and com- pression pressure on its electrical conductivity. Journal of Industrial and Engineering Chemistry 20(6): 3994-3999. otwiera się w nowej karcie
  11. Carrera E (1997) An improved Reissner-Mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. Journal of Intelligent Material Sys- tems and Structures 8(3): 232-248. otwiera się w nowej karcie
  12. Carrera E (2003) Historical review of Zig-Zag theories for multilayered plates and shells. Applied Mechanics Reviews 56(2): 287-308. otwiera się w nowej karcie
  13. Carrera E, Brischetto S and Nali P (2011) Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis. Chichester: Wiley. otwiera się w nowej karcie
  14. Chen L, Gong XL and Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polymer Testing 27(3): 340-345. otwiera się w nowej karcie
  15. Chikh N, Nour A, Aguib S, et al. (2016) Dynamic analysis of the non-linear behavior of a composite sandwich beam with a magnetorheological elastomer core. Acta Mechan- ica Solida Sinica 29(3): 271-283. otwiera się w nowej karcie
  16. Choi WJ, Xiong YP and Shenoi RA (2010) Vibration charac- teristics of sandwich beams with steel skins and magnetor- heological elastomer cores. Advances in Structural Engineering 13(5): 837-847. otwiera się w nowej karcie
  17. Chro´s´cielewski J, Kreja I, Sabik A, et al. (2011) Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mechanics of Advanced Materi- als and Structures 18(6): 403-419. otwiera się w nowej karcie
  18. Chro´s´cielewski J, Schmidt R and Eremeyev VA (2019) Non- linear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mechanics and Thermodynamics 31: 147-188. otwiera się w nowej karcie
  19. de Souza EF, Gomes GF, Ancelotti AC, et al. (2018) Experi- mental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core. Engineering Structures 176: 231-242.
  20. de Souza EF, Gomes GF, Ancelotti AC, et al. (2019) A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honey- comb core. Composite Structures 209: 242-257.
  21. Deng H, Gong X and Wang L (2006) Development of an adaptive tuned vibration absorber with magnetorheologi- cal elastomer. Smart Materials and Structures 15(5): N111. otwiera się w nowej karcie
  22. Dwivedy SK, Mahendra N and Sahu KC (2009) Parametric instability regions of a soft and magnetorheological elasto- mer cored sandwich beam. Journal of Sound and Vibration 325(4-5): 686-704. otwiera się w nowej karcie
  23. Eisentra¨ger J, Naumenko K, Altenbach H, et al. (2015) Appli- cation of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. International Journal of Mechanical Sciences 96: 163-171. otwiera się w nowej karcie
  24. Eshaghi M, Sedaghati R and Rakheja S (2015) The effect of magneto-rheological fluid on vibration suppression capa- bility of adaptive sandwich plates: experimental and finite element analysis. Journal of Intelligent Material Systems and Structures 26(14): 1920-1935. otwiera się w nowej karcie
  25. Eshaghi M, Sedaghati R and Rakheja S (2016) Dynamic characteristics and control of magnetorheological/electro- rheological sandwich structures: a state-of-the-art review. Journal of Intelligent Material Systems and Structures 27(15): 2003-2037. otwiera się w nowej karcie
  26. Farshad M and Benine A (2004) Magnetoactive elastomer composites. Polymer Testing 23(3): 347-353. otwiera się w nowej karcie
  27. Giunta G, Biscani F, Belouettar S, et al. (2013) Free vibration analysis of composite beams via refined theories. Compo- sites Part B: Engineering 44(1): 540-552. otwiera się w nowej karcie
  28. Grigolyuk E and Kulikov GM (1988) Multilayer Reinforced Shells: Calculation of Pneumatic Tires. Moscow: Mashi- nostroenie (in Russian). otwiera się w nowej karcie
  29. Hu B, Wang D, Xia P, et al. (2006) Investigation on the vibra- tion characteristics of a sandwich beam with smart compo- sites-MRF. World Journal of Modelling and Simulation 2(3): 201-206. otwiera się w nowej karcie
  30. Hu GL, Guo M and Li WH (2012) Analysis of vibration characteristics of magnetorheological elastomer sandwich beam under non-homogeneous magnetic field. Applied Mechanics and Materials 101: 202-206. otwiera się w nowej karcie
  31. Hu GL, Guo M, Li W, et al. (2011) Experimental investiga- tion of the vibration characteristics of a magnetorheologi- cal elastomer sandwich beam under non-homogeneous small magnetic fields. Smart Materials and Structures 20(12): 127001. otwiera się w nowej karcie
  32. Irazu L and Elejabarrieta MJ (2017) Magneto-dynamic anal- ysis of sandwiches composed of a thin viscoelastic- magnetorheological layer. Journal of Intelligent Material Systems and Structures 28(20): 3106-3114. otwiera się w nowej karcie
  33. Jolly MR, Carlson JD and Munoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Materi- als and Structures 5(5): 607. otwiera się w nowej karcie
  34. Kaplunov J, Prikazchikov DA and Prikazchikova LA (2017) Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. International Journal of Solids and Structures 113-114: 169-179. otwiera się w nowej karcie
  35. Kerwin EM Jr (1959) Damping of flexural waves by a con- strained viscoelastic layer. The Journal of the Acoustical Society of America 31(7): 952-962. otwiera się w nowej karcie
  36. Kimball A and Lovell D (1927) Internal friction in solids. Physical Review 30(6): 948-959.
  37. Korobko EV, Mikhasev GI, Novikova ZA, et al. (2012) On damping vibrations of three-layered beam containing mag- netorheological elastomer. Journal of Intelligent Material Systems and Structures 23(9): 1019-1023. otwiera się w nowej karcie
  38. Kozlowska J, Boczkowska A, Czulak A, et al. (2016) Novel MRE/CFRP sandwich structures for adaptive vibration control. Smart Materials and Structures 25(3): 035025. otwiera się w nowej karcie
  39. Kreja I (2011) A literature review on computational models for laminated composite and sandwich panels. Open Engi- neering 1(1): 59-80. otwiera się w nowej karcie
  40. Kwon S, Lee J and Choi H (2018) Magnetic particle filled elastomeric hybrid composites and their magnetorheologi- cal response. Materials 11(6): 1040. otwiera się w nowej karcie
  41. Lara-Prieto V, Parkin R, Jackson M, et al. (2009) Vibration characteristics of MR cantilever sandwich beams: experi- mental study. Smart Materials and Structures 19(1): 015005. otwiera się w nowej karcie
  42. Li W, Zhou Y and Tian T (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheologica Acta 49(7): 733-740. otwiera się w nowej karcie
  43. Li Y, Li J, Li W, et al. (2014) A state-of-the-art review on magnetorheological elastomer devices. Smart Materials and Structures 23(12): 123001. otwiera się w nowej karcie
  44. Liao GJ, Gong XL, Kang CJ, et al. (2011) The design of an active-adaptive tuned vibration absorber based on magne- torheological elastomer and its vibration attenuation per- formance. Smart Materials and Structures 20(7): 075015. otwiera się w nowej karcie
  45. Long M, Hu GL and Wang SL (2013) Vibration response analysis of MRE cantilever sandwich beam under non- homogeneous magnetic fields. Applied Mechanics and Materials 303: 49-52. otwiera się w nowej karcie
  46. Megha S, Kumar S and D'Silva R (2016) Vibration analysis of magnetorheological elastomer sandwich beam under different magnetic fields. Journal of Mechanical Engineer- ing and Automation 6(5A): 75-80.
  47. Mikhasev GI, Altenbach H and Korchevskaya EA (2014) On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheo- logical elastomer. Composite Structures 113: 186-196. otwiera się w nowej karcie
  48. Mikhasev GI and Altenbach H (2019) Thin-Walled Lami- nated Structures: Buckling, Vibrations and Their Suppres- sion. Berlin: Springer. otwiera się w nowej karcie
  49. Mikhasev GI and Botogova MG (2017) Effect of edge shears and diaphragms on buckling of thin laminated medium- length cylindrical shells with low effective shear modulus under external pressure. Acta Mechanica 228(6): 2119-2140. otwiera się w nowej karcie
  50. Mikhasev GI, Botogova MG and Korobko EV (2011) The- ory of thin adaptive laminated shells based on magnetor- heological materials and its application in problems on vibration suppression. In: Altenbach H and Eremeyev VA (eds) Shell-Like Structures (Advanced Structured Materi- als), vol. 15. Berlin: Springer, pp. 727-750. otwiera się w nowej karcie
  51. Mikhasev GI, Seeger F and Gabbert U (2001) Comparison of analytical and numerical methods for the analysis of vibra- tion of composite shell structures. In: Kasper R (ed.) Entwicklungsmethoden und Entwicklungsprozesse im Maschinenbau, Magdeburger Maschinenbau-Tage, vol. 5. Berlin: Logos Verlag Berlin, pp. 175-183.
  52. Mohammadi F and Sedaghati R (2012) Nonlinear free vibra- tion analysis of sandwich shell structures with a con- strained electrorheological fluid layer. Smart Materials and Structures 21(7): 075035. otwiera się w nowej karcie
  53. Naumenko K and Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Composite Structures 112: 283-291. otwiera się w nowej karcie
  54. Naumenko K and Eremeyev VA (2017) A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Composite Structures 178: 434-446. otwiera się w nowej karcie
  55. Nayak B, Dwivedy SK and Murthy KSRK (2011) Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary con- ditions. Journal of Sound and Vibration 330(9): 1837-1859. otwiera się w nowej karcie
  56. Nayak B, Dwivedy SK and Murthy KSRK (2012) Multi-fre- quency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. International Jour- nal of Non-Linear Mechanics 47(5): 448-460. otwiera się w nowej karcie
  57. Nayak B, Dwivedy SK and Murthy KSRK (2014) Dynamic stability of a rotating sandwich beam with magnetorheolo- gical elastomer core. European Journal of Mechanics-A/ Solids 47: 143-155. otwiera się w nowej karcie
  58. Nielsen BB, Nielsen MS and Santos IF (2017) A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: finite element modeling and experimental vali- dation. Journal of Intelligent Material Systems and Struc- tures 28(1): 78-96. otwiera się w nowej karcie
  59. Prikazchikova L, Aydin YE, Erbas B, et al. (2018) Asympto- tic analysis of an anti-plane dynamic problem for a three- layered strongly inhomogeneous laminate. Mathematics and Mechanics of Solids. Epub ahead of print 3 August 2018. DOI: 10.1177/1081286518790804. otwiera się w nowej karcie
  60. Rajamohan V, Sedaghati R and Rakheja S (2009) Vibration analysis of a multi-layer beam containing magnetorheolo- gical fluid. Smart Materials and Structures 19(1): 015013. otwiera się w nowej karcie
  61. Ross D, Ungar EE and Kervin EM (1959) Damping of plate flexural vibrations by means of viscoelastic laminae. In: Ruzicka JE (ed.) Structural Damping. New York: ASME, pp. 49-97.
  62. Shaw JS and Wang CA (2019) Design and control of adap- tive vibration absorber for multimode Structure. Journal of Intelligent Material Systems and Structures 30(7): 1043-1052. otwiera się w nowej karcie
  63. Soroka WW (1949) Note on the relations between viscous and structural damping coefficients. Journal of the Aero- nautical Sciences 16(7): 409-410. otwiera się w nowej karcie
  64. Sun Q, Zhou JX and Zhang L (2003) An adaptive beam model and dynamic characteristics of magnetorheological materials. Journal of Sound and Vibration 261(3): 465-481. otwiera się w nowej karcie
  65. Sun TL, Gong XL, Jiang WQ, et al. (2008) Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polymer Testing 27(4): 520-526. otwiera się w nowej karcie
  66. Tovstik PE and Tovstik TP (2016) Generalized Timoshenko- Reissner models for beams and plates, strongly heteroge- neous in the thickness direction. Journal of Applied Mathe- matics and Mechanics 97: 296-308. otwiera się w nowej karcie
  67. Wang G, Veeramani S and Wereley NM (2000) Analysis of sandwich plates with isotropic face plates and viscoelastic cores. ASME Journal of Vibration and Acoustics 122(3): 305-312. otwiera się w nowej karcie
  68. Wang X, Gordaninejad F, Calgar M, et al. (2009) Sensing behavior of magnetorheological elastomers. Journal of Mechanical Design 131(9): 091004. otwiera się w nowej karcie
  69. Wang Y, Hu Y, Wang Y, et al. (2006) Magnetorheological elastomers based on isobutylene-isoprene rubber. Polymer Engineering & Science 46(3): 264-268. otwiera się w nowej karcie
  70. Wei KX, Meng G, Zhang WM, et al. (2008) Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores. Journal of Central South University of Technology 15(1): 239-242. otwiera się w nowej karcie
  71. Yalcintas M and Dai H (1999) Magnetorheological and elec- trorheological materials in adaptive structures and their performance comparison. Smart Materials and Structures 8(5): 560-573. otwiera się w nowej karcie
  72. Yalcintas M and Dai H (2003) Vibration suppression capabil- ities of magnetorheological materials based adaptive struc- tures. Smart Materials and Structures 13(1): 1-11. otwiera się w nowej karcie
  73. Yang IH, Yoon JH, Jeong JE, et al. (2013) Magnetic-field- dependent shear modulus of a magnetorheological elastomer based on natural rubber. Journal of the Korean Physical Soci- ety 62(2): 220-228. otwiera się w nowej karcie
  74. Yeh JY (2011) Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer. Aero- space Science and Technology 15(4): 293-303. otwiera się w nowej karcie
  75. Yeh JY (2013) Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treat- ment. Smart Materials and Structures 22(3): 035010. otwiera się w nowej karcie
  76. Yeh JY (2014) Vibration characteristics analysis of orthotro- pic rectangular sandwich plate with magnetorheological elastomer. Procedia Engineering 79: 378-385. otwiera się w nowej karcie
  77. Yildirim T, Ghayesh MH, Li W, et al. (2016) Experimental nonlinear dynamics of a geometrically imperfect magneto- rheological elastomer sandwich beam. Composite Struc- tures 138: 381-390. otwiera się w nowej karcie
  78. Zhang J, Yildirim T, Alici G, et al. (2018) Experimental non- linear vibrations of an MRE sandwich plate. Smart Struc- tures and Systems 22(1): 71-79.
  79. Zhou GY and Wang Q (2005a) Magnetorheological elastomer-based smart sandwich beams with nonconduc- tive skins. Smart Materials and Structures 14(5): 1001-1009. otwiera się w nowej karcie
  80. Zhou GY and Wang Q (2005b) Study on the adjustable rigid- ity of magnetorheological-elastomer-based sandwich beams. Smart Materials and Structures 15(1): 59-74. otwiera się w nowej karcie
  81. Zhou GY and Wang Q (2006a) Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part i: magnetoelastic loads in conductive skins. International Journal of Solids and Structures 43(17): 5386-5402. otwiera się w nowej karcie
  82. Zhou GY and Wang Q (2006b) Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part ii: dynamic properties. International Journal of Solids and Structures 43(17): 5403-5420. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 118 razy

Publikacje, które mogą cię zainteresować

Meta Tagi