Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
Abstrakt
Object detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote sensing hasthe limitations of low efficiency in detecting small object and the existing methods have poor localization. Cascade Object Detection methods have been applied to increase the learning process of the detection model. In this research, the Additive Activation Function (AAF) is applied in a Faster Region based CNN (RCNN) for object detection. The proposed AAF-Faster RCNN method has the advantage of better convergence and clear bounding variance. The Fourier Series and Linear Combination of activation function are used to update the loss function. The Microsoft (MS) COCO datasets and Pascal VOC 2007/2012 are used to evaluate the performance of the AAF-Faster RCNN model. The proposed AAF-Faster RCNN is also analyzed for small object detection in the benchmark dataset. The analysis shows that the proposed AAF-Faster RCNN model has higher efficiency than state-of-art Pay Attention to Them (PAT) model in object detection. To evaluate the performance of AAF-Faster RCNN method of object detection in remote sensing, the NWPU VHR-10 remote sensing data set is used to test the proposed method. The AAF-Faster RCNN model has mean Average Precision (mAP) of 83.1% and existing PAT-SSD512 method has the 81.7%mAP in Pascal VOC 2007 dataset.
Cytowania
-
7 2
CrossRef
-
0
Web of Science
-
6 4
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Remote Sensing
nr 13,
ISSN: 2072-4292 - Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Shivappriya S., Priyadarsini M., Stateczny A., Puttamadappa C., Parameshachari B.: Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function// Remote Sensing -Vol. 13,iss. 2 (2021), s.200-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs13020200
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 204 razy
Publikacje, które mogą cię zainteresować
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
- S. S. Narayana Chintapalli,
- S. Prakash Singh,
- J. Frnda
- + 3 autorów
Melanoma skin cancer detection using mask-RCNN with modified GRU model
- K. M. Monica,
- J. Shreeharsha,
- P. Falkowski-Gilski
- + 3 autorów
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
- A. Stateczny,
- G. Uday Kiran,
- G. Bindu
- + 2 autorów
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
- R. K. Patra,
- S. N. Patil,
- P. Falkowski-Gilski
- + 2 autorów