Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model
Abstrakt
The rise of artificial neural networks (ANNs) has revolutionized various fields of research, demonstrating their effectiveness in solving complex problems. However, there are still unexplored areas where the application of neural networks, particularly convolutional neural network (CNN) models, has yet to be explored. One area is where the application of ANNs is even expected is geomorphology. One of the tasks of geomorphology is the classification of landforms in a broad sense. Such classification requires a precise interpretation approach to create a homogeneous product, and this requires time and a uniform, consistent approach by the interpreter, which is not easy to achieve with manual operations. Classifications in geomorphology aremainly performed bymanual or semiautomatic methods. The use of ANNs can complement and, in many areas, replace manual classification and reduce the time commitment of the interpreter, not least because of its repeatability and objectivity, which is a definite advantage in the case of geomorphological interpretation of vast areas. This article uses two popular CNN architectures, includingVGGand residual neural network, to solve the problem of classifying glacial and fluvioglacial andforms based on a digital elevation model (DEM). The results of this article show that CNNs can produce high accuracy scores (up to 87% overall accuracy) for a ground-based dataset and are a suitable method for identifying glacial and fluvioglacial landforms using DEM data as input. The presented method provides an objective, reproducible, and fast tool for automatic geomorphological analysis of terrain imagery of vast areas.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (6)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
nr 17,
strony 18549 - 18565,
ISSN: 1939-1404 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Nadachowski P., Łubniewski Z., Malecha-Łysakowska A., Trzcińska K., Wróblewski R., Tęgowski J.: Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model// IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing -,iss. vol. 17 (2024), s.18549-18565
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/jstars.2024.3470253
- Źródła finansowania:
-
- IDUB
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 1 razy
Publikacje, które mogą cię zainteresować
Comparison of Deep Learning Approaches in Classification of Glacial Landforms
- P. Nadachowski,
- Z. Łubniewski,
- K. Trzcińska
- + 1 autorów
Glacial Landform Classification with Vision Transformer and Digital Elevation Model
- P. Nadachowski,
- Z. Łubniewski,
- J. Tęgowski