Combined Close Range Photogrammetry and Terrestrial Laser Scanning for Ship Hull Modelling - Publikacja - MOST Wiedzy

Wyszukiwarka

Combined Close Range Photogrammetry and Terrestrial Laser Scanning for Ship Hull Modelling

Abstrakt

The paper addresses the fields of combined close-range photogrammetry and terrestrial laser scanning in the light of ship modelling. The authors pointed out precision and measurement accuracy due to their possible complex application for ship hulls inventories. Due to prescribed vitality of every ship structure, it is crucial to prepare documentation to support the vessel processes. The presented methods are directed, combined photogrammetric techniques in ship hull inventory due to submarines. The class of photogrammetry techniques based on high quality photos are supposed to be relevant techniques of the inventories’ purpose. An innovative approach combines these methods with Terrestrial Laser Scanning. The process stages of data acquisition, post-processing, and result analysis are presented and discussed due to market requirements. Advantages and disadvantages of the applied methods are presented.

Cytowania

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 95 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Geosciences nr 9, strony 1 - 16,
ISSN:
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Burdziakowski P., Tysiąc P.: Combined Close Range Photogrammetry and Terrestrial Laser Scanning for Ship Hull Modelling// Geosciences -Vol. 9,iss. 5 (2019), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/geosciences9050242
Bibliografia: test
  1. Rey-Barroso, L.; Burgos-Fernández, F.J.; Delpueyo, X.; Ares, M.; Royo, S.; Malvehy, J.; Puig, S.; Vilaseca, M. Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis. Sensors 2018, 18, 1441. [CrossRef] otwiera się w nowej karcie
  2. Narayanamurthy, V.; Padmapriya, P.; Noorasafrin, A.; Pooja, B.; Hema, K.; Yuhainis Firus Khan, A.; Nithyakalyanic, K.; Samsurib, F. Skin cancer detection using non-invasive techniques. RSC Adv. 2018, 8. [CrossRef] otwiera się w nowej karcie
  3. Bitenc, M.; Lindenbergh, R.C.; Khoshelham, K.; Van Waarden, A.P. Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sens. 2011, 3. [CrossRef] otwiera się w nowej karcie
  4. Ercoli, L.; Zimbardo, M.; Nocilla, N.; Nocilla, A.; Ponzoni, E. Evaluation of cliff recession in the Valle dei Templi in Agrigento (Sicily). Eng. Geolo. 2015, 192, 129-138. otwiera się w nowej karcie
  5. Kuhn, D.; Prufer, S. Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestial laser scanning: A case study of Rugen, Germany. Geomorphology 2014, 213, 153-165. [CrossRef] Geosciences 2019, 9, 242 otwiera się w nowej karcie
  6. Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and optical methods in structural dynamics-A review. Mech. Syst. Signal Process. 2017, 86, 17-34. [CrossRef] otwiera się w nowej karcie
  7. Lahamy, H.; Lichti, D.; Steward, J.; El-Badry, M.; Moravvej, M. Measurement of Deflection in Concrete Beams During Fatigue Loading Test Using the Microsoft Kinect 2.0. J. Appli. Geod. 2016, 10, 71-77. [CrossRef] otwiera się w nowej karcie
  8. Ziolkowski, P. Processing of Point Cloud Data Retrieved from Terrestrial Laser Scanning for Structural Modeling by Finite Element Method. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM2017, Bulgaria, 27 June-6 July 2017; pp. 211-218. otwiera się w nowej karcie
  9. Przyborski, M.; Tysiac, P. As-built inventory of the office building with the use of terrestrial laser scanning, E3S Web Conf. Semina. Geomat. Civ. Environ. Eng. (2017 BGC) 2018, 26. [CrossRef] otwiera się w nowej karcie
  10. Holopainen, M.; Vastaranta, M.; Kankare, V.; Vaaja, M.; Hyyppä, H.; Liang, X.L.; Litkey, P.; Yu, X.W.; Kaartinen, H.; Jakkola, A.; et al. The use of ALS, TLS and VLS measurements in mapping and monitoring urban trees. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11-13 April 2011. [CrossRef] otwiera się w nowej karcie
  11. Mikrut, S.; Moskal, A.; Marmol, U. Integration of Image and Laser Scanning Data Based on Selected Example. Image Process. Commun. 2014, 19, 37-44. [CrossRef] otwiera się w nowej karcie
  12. Remondino, F.; El-Hakim, S. Image-based 3D modelling: A review. Photogramm. Rec. 2006, 21, 269-291. [CrossRef] otwiera się w nowej karcie
  13. Chen, Y.; Medioni, G. Object Modeling by Registration of Multiple Range Images. In Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, CA, USA, 9-11 April 1991. [CrossRef] otwiera się w nowej karcie
  14. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modelling, Quebec City, QC, Canada, 28 May-1 June 2001; otwiera się w nowej karcie
  15. He, Y.; Liang, B.; Yang, J.; Li, S.Z.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. [CrossRef] otwiera się w nowej karcie
  16. Du, S.Y.; Xu, Y.T.; Wan, T.; Hu, H.Z.; Zhang, S.R.; Xu, G.L.; Zhang, X.T. Robust iterative closest point algorithm based on the global reference point for rotation invariant registration. PLoS One 2017, 12, e0188039. [CrossRef] otwiera się w nowej karcie
  17. Abbas, M.A.; Lichti, D.D.; Chong, A.K.; Setan, H.; Majid, Z.; Lau, C.L.; Ariff, M.F.M. Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement. J Int. Meas.Confed. 2017, 100, 301-310. [CrossRef] otwiera się w nowej karcie
  18. Ahmed, Y.M.; Jamail, A.B.; Yaakob, O.B. Boat survey using photogrammetry method. Int. Rev. Mech. Eng. 2012, 6, 1643-1647. otwiera się w nowej karcie
  19. Menna, F.; Nocerino, E.; Troisi, S.; Remondino, F. Joint alignment of underwater and above-the-water photogrammetric 3D models by independent models adjustment. Int. Archives Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 143-151. [CrossRef] otwiera się w nowej karcie
  20. Menna, F.; Nocerino, E.; Troisi, S.; Remondino, F. A photogrammetric approach to survey floating and semi-submerged objects. In Proceedings of the Videometrics, Range Imaging and Applications XII, Munich, Germany, 14-16 May 2013; pp. 1-15. otwiera się w nowej karcie
  21. Ordóñez, C.; Riveiro, B.; Arias, P.; Armesto, J. Application of close range photogrammetry to deck measurement in recreational ships. Sensors 2009, 9, 6991-7002. [CrossRef] [PubMed] otwiera się w nowej karcie
  22. Koelman, H.J. Application of a photogrammetry-based system to measure and re-engineer ship hulls and ship parts: An industrial practices-based report. Comput. Aided Des. 2010, 42, 731-743. [CrossRef] otwiera się w nowej karcie
  23. Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-range Photogrammetry and 3D Imaging; otwiera się w nowej karcie
  24. Walter de Gruyter: Berlin, Germany, 2014.
  25. Tang, C.H.H.; Tang, H.E.; Tay, P.K.J. Low cost digital close range photogrammetric measurement of an as-built anchor handling tug hull. Ocean Eng. 2016, 119, 67-74. [CrossRef] otwiera się w nowej karcie
  26. Zhao, Y.; Hu, Q.; Li, H.; Wang, S.; Ai, M. Evaluating Carbon Sequestration and PM2.5 Removal of Urban Street Trees Using Mobile Laser Scanning Data. Remote Sens. 2018, 10, 1759. [CrossRef] otwiera się w nowej karcie
  27. Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors 2018, 18, 3682. [CrossRef] otwiera się w nowej karcie
  28. Janowski, A.; Nagrodzka-Godycka, K.; Szulwic, J.; Ziolkowski, P. Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Comput. Concr. 2016, 18, 405-420. [CrossRef] otwiera się w nowej karcie
  29. Hong, S.; Park, I.; Lee, J.; Lim, K.; Choi, Y.; Sohn, H.-G. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems. Sensors 2017, 17, 474. [CrossRef] otwiera się w nowej karcie
  30. Zheng, Y.; Peter, M.; Zhong, R.; Oude Elberink, S.; Zhou, Q. Space Subdivision in Indoor Mobile Laser Scanning Point Clouds Based on Scanline Analysis. Sensors 2018, 18, 1838. [CrossRef] [PubMed] otwiera się w nowej karcie
  31. Zhou, Y.; Wang, S.; Mei, X.; Yin, W.; Lin, C.; Hu, Q.; Mao, Q. Railway Tunnel Clearance Inspection Method Based on 3D Point Cloud from Mobile Laser Scanning. Sensors 2017, 17, 2055. [CrossRef] [PubMed] otwiera się w nowej karcie
  32. Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot. 2015, 4, 1-104. [CrossRef] otwiera się w nowej karcie
  33. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008, 27, 1-10. [CrossRef] otwiera się w nowej karcie
  34. Mellado, N.; Dellepiane, M.; Scopigno, R. Relative Scale Estimation and 3D Registration of Multi-Modal Geometry Using Growing Least Squares. IEEE Trans. Vis. Comput. Graph. 2016, 22, 2160-2173. [CrossRef] otwiera się w nowej karcie
  35. Corsini, M.; Dellepiane, M.; Ganovelli, F.; Gherardi, R.; Fusiello, A.; Scopigno, R. Fully Automatic Registration of Image Sets on Approximate Geometry. Int. J. Comput. Vis. 2013, 102, 91-111. [CrossRef] otwiera się w nowej karcie
  36. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 213 razy

Publikacje, które mogą cię zainteresować

Meta Tagi