Coupled evolution of preferential paths for force and damage in the pre-failure regime in disordered and heterogeneous, quasi-brittle granular materials. - Publikacja - MOST Wiedzy

Wyszukiwarka

Coupled evolution of preferential paths for force and damage in the pre-failure regime in disordered and heterogeneous, quasi-brittle granular materials.

Abstrakt

Metoda elementów dyskretnych (DEM) została wykorzystana do symulacji betonu poddanego jednoosiowemu rozciąganiu. Beton modelowano jako materiał losową heterogeniczy 2/3-fazowy, złożony z cząstek kruszywa, matrycy cementowej i stref przejściowych międzyfazowej. Odkryto dowody na zoptymalizowaną transmisję siły, scharakteryzowaną przez dwa nowe wzorce, które przewidują i wyjaśniają sprzężoną ewolucję ścieżki siły i uszkodzenia od poziomu mikrostrukturalnego do poziomu makroskopowego. Pierwszy obejmuje możliwie najkrótsze ścieżki transmisji, które mogą przenosić siłę globalną. Ścieżki te przewidują łańcuchy sił rozciągających. Drugi wzór to wąskie gardło przepływu, ścieżka po zoptymalizowanej drodze, która jest podatna na zatory i pojawia się tam gdzie jest makro-rysa. Kooperacyjna ewolucja preferencyjnych ścieżki dla uszkodzeń i siły rzuca światło na to, dlaczego miejsca o najwyższym stężeniu naprężeń i uszkodzenia w początkowych stadiach obszaru przed zniszczeniem nie dostarczają realistycznego wskaźnika ostatecznego położenia makro-rysy.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 45 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Frontiers in Materials nr 7, strony 1 - 20,
ISSN: 2296-8016
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Tordesillas A., Kahagalage S., Ras C., Nitka M., Tejchman-Konarzewski A.: Coupled evolution of preferential paths for force and damage in the pre-failure regime in disordered and heterogeneous, quasi-brittle granular materials.// Frontiers in Materials -Vol. 7, (2020), s.1-20
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3389/fmats.2020.00079
Bibliografia: test
  1. Agnew, S. R., Dong, L., Keene, J. I., and Wadley, H. N. (2018). Mechanical properties of large TiC-Mo-Ni cermet tiles. Int. J. Refract. Metals Hard Mater. 75, 238-247. doi: 10.1016/j.ijrmhm.2018.05.005 otwiera się w nowej karcie
  2. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall. otwiera się w nowej karcie
  3. Bentur, A., and Mindess, S. (1986). The effect of concrete strength on crack patterns. Cement Concrete Res. 16, 59-66. doi: 10.1016/0008-8846(86)90068-2 otwiera się w nowej karcie
  4. Cho, N., Martin, C. D., and Sego, D. C. (2007). A clumped particle model for rock. Int. J. Rock Mech. Mining Sci. 44, 997-1010. doi: 10.1016/j.ijrmms.2007.02.002 otwiera się w nowej karcie
  5. Duan, K., Kwok, C., and Tham, L. (2015). Micromechanical analysis of the failure process of brittle rock. Int. J. Num. Anal. Methods Geomech. 39, 618-634. doi: 10.1002/nag.2329 otwiera się w nowej karcie
  6. Dueñas-Osorio, L., and Vemuru, S. M. (2009). Cascading failures in complex infrastructure systems. Struct. Saf. 31, 157-167. doi: 10.1016/j.strusafe.2008.06.007 otwiera się w nowej karcie
  7. Estrada, E., Hatano, N., and Benzi, M. (2012). The physics of communicability in complex networks. Phys. Rep. 514, 89-119. doi: 10.1016/j.physrep.2012.01.006 otwiera się w nowej karcie
  8. Gu, X. W., Wu, Z., Zhang, Y.-W., Srolovitz, D. J., and Greer, J. R. (2013). Microstructure versus flaw: mechanisms of failure and strength in nanostructures. Nano Lett. 13, 5703-5709. doi: 10.1021/nl403453h otwiera się w nowej karcie
  9. Huang, D., and Zhu, T.-T. (2018). Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress. Eng. Fract. Mech. 200, 387-400. doi: 10.1016/j.engfracmech.2018.08.012 otwiera się w nowej karcie
  10. Jiang, M., Zhu, F., Liu, F., and Utili, S. (2014). A bond contact model for methane hydrate-bearing sediments with interparticle cementation. Int. J. Num. Anal. Methods Geomech. 38, 1823-1854. doi: 10.1002/nag.2283 otwiera się w nowej karcie
  11. Jiang, M. J., Yan, H. B., Zhu, H. H., and Utili, S. (2011). Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38, 14-29. doi: 10.1016/j.compgeo.2010.09.001 otwiera się w nowej karcie
  12. Kahagalage, S., Tordesillas, A., Nitka, M., and Tejchman, J. (2017). "Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials, " in EPJ Web of Conferences (Montpellier), 08012. doi: 10.1051/epjconf/201714008012 otwiera się w nowej karcie
  13. Kondo, S., Ishihara, A., Tochigi, E., Shibata, N., and Ikuhara, Y. (2019). Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commun. 10:2112. doi: 10.1038/s41467-019-10183-3 otwiera się w nowej karcie
  14. Kozicki, J., and Donzé, F. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197, 4429-4443. doi: 10.1016/j.cma.2008.05.023 otwiera się w nowej karcie
  15. Lan, H., Martin, C. D., and Hu, B. (2010). Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J.Geophys. Res. Solid Earth. 115:B1. doi: 10.1029/2009JB006496 otwiera się w nowej karcie
  16. Lin, Q., and Tordesillas, A. (2014). Towards an optimization theory for deforming dense granular materials: minimum cost maximum flow solutions. J. Indus. Manage. Optimizat. 10, 337-362. doi: 10.3934/jimo.2014.10.337 otwiera się w nowej karcie
  17. Liu, H., Ren, X., Liang, S., and Li, J. (2019). Physical mechanism of concrete damage under compression. Materials 12:3295. doi: 10.3390/ma12203295 otwiera się w nowej karcie
  18. McBeck, J., Mair, K., and Renard, F. (2019). How porosity controls macroscopic failure via propagating fractures and percolating force chains in porous granular rocks. J. Geophys. Res. Solid Earth. 124, 9920-9939. doi: 10.1029/2019JB017825 otwiera się w nowej karcie
  19. Mindess, S., and Diamond, S. (1982). The cracking and fracture of mortar. Matériaux et Construction 15, 107-113. doi: 10.1007/BF02473571 otwiera się w nowej karcie
  20. Mishra, R. K., Mohamed, A. K., Geissbühler, D., Manzano, H., Jamil, T., Shahsavari, R., et al. (2017). cemff: A force field database for cementitious materials including validations, applications and opportunities. Cement and Concrete Res. 102, 68-89. doi: 10.1016/j.cemconres.2017.09.003 otwiera się w nowej karcie
  21. Muthuswamy, M., and Tordesillas, A. (2006). How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? J. Stat. Mech. Theory Exp. 2006:P09003. doi: 10.1088/1742-5468/2006/09/P09003 otwiera się w nowej karcie
  22. Nitka, M., and Tejchman, J. (2014). Discrete modeling of micro-structure evolution during concrete fracture using DEM. Comput. Modell. Concrete Struct. 345, 345-354. doi: 10.1201/b16645-39 otwiera się w nowej karcie
  23. Nitka, M., and Tejchman, J. (2015). Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 17, 145-164. doi: 10.1007/s10035-015-0546-4 otwiera się w nowej karcie
  24. Nitka, M., and Tejchman, J. (2018). A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray µCT images. Cement Concrete Res. 107, 11-29. doi: 10.1016/j.cemconres.2018.02.006 otwiera się w nowej karcie
  25. Oliver-Leblond, C. (2019). Discontinuous crack growth and toughening mechanisms in concrete: a numerical study based on the beam-particle approach. Eng. Fract. Mech. 207, 1-22. doi: 10.1016/j.engfracmech.2018.11.050 otwiera się w nowej karcie
  26. Ord, A., and Hobbs, B. E. (2010). Fracture pattern formation in frictional, cohesive, granular material. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 95-118. doi: 10.1098/rsta.2009.0199 otwiera się w nowej karcie
  27. Ovalle, C., Dano, C., and Hicher, P.-Y. (2013). Experimental data highlighting the role of surface fracture energy in quasi-static confined comminution. Int. J. Fract. 182, 123-130. doi: 10.1007/s10704-013-9833-4 otwiera się w nowej karcie
  28. Patel, R., Valles, D., Riveros, G., Thompson, D., Perkins, E., Hoover, J., et al. (2018). Stress flow analysis of bio-structures using the finite element method and the flow network approach. Finite Elements Design 152, 46-54. doi: 10.1016/j.finel.2018.09.003 otwiera się w nowej karcie
  29. Pease, B. J., Geiker, M. R., Stang, H., and Weiss, J. (2006). "Photogrammetric assessment of flexure induced cracking of reinforced concrete beams under service loads, " in Second International RILEM Symposium: Advances in Concrete Through Science and Engineering (Quebec City: Rilem Publications). doi: 10.1617/2351580028.041 otwiera się w nowej karcie
  30. Potyondy, D. O., and Cundall, P. A. (2004). A bonded-particle model for rock. Int. J. Rock Mech. Mining Sci. 41, 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011 otwiera się w nowej karcie
  31. Schenker, I., Filser, F. T., Aste, T., and Gauckler, L. J. (2008). Microstructures and mechanical properties of dense particle gels: microstructural characterisation. J. Eur. Ceramic Soc. 28, 1443-1449. doi: 10.1016/j.jeurceramsoc.2007.12.007 otwiera się w nowej karcie
  32. Schlangen, E. (2008). "Crack development in concrete, part 1: fracture experiments and CT-scan observations, " in Key Engineering Materials (Stafa-Zurich, UK: Trans Tech Publ.), 69-72. doi: 10.4028/www.scientific.net/KEM.385-387.69 otwiera się w nowej karcie
  33. Scholtes, L., and Donze, F.-V. (2013). A DEM model for soft and hard rocks: role of grain interlocking on strength. J. Mech. Phys. Solids 61, 352-369. doi: 10.1016/j.jmps.2012.10.005 otwiera się w nowej karcie
  34. Sinaie, S., Ngo, T. D., and Nguyen, V. P. (2018). A discrete element model of concrete for cyclic loading. Comput. Struct. 196, 173-185. doi: 10.1016/j.compstruc.2017.11.014 otwiera się w nowej karcie
  35. Skarzynski, L., Nitka, M., Tejchman, J. (2015). Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray µCT images of internal structure. Eng. Fract. Mech. 147, 13-35. doi: 10.1016/j.engfracmech.2015.08.010 otwiera się w nowej karcie
  36. Skarzynski, L., and Tejchman, J. (2016). Experimental investigations of fracture process in concrete by means of x-ray micro-computed tomography. Strain 52, 26-45. doi: 10.1111/str.12168 otwiera się w nowej karcie
  37. Skarzynski, L., and Tejchman, J. (2019). Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning. Mater. Character. 154, 40-52. doi: 10.1016/j.matchar.2019.05.034 otwiera się w nowej karcie
  38. Smilauer, V., and Chareyre, B. (2010). YADE DEM Formulation, Vol. 393. Yade Documentation.
  39. Suchorzewski, J., Tejchman, J., and Nitka, M. (2018a). Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int. J. Damage Mech. 27, 578-607. doi: 10.1177/1056789517690915 otwiera się w nowej karcie
  40. Suchorzewski, J., Tejchman, J., and Nitka, M. (2018b). Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension. Theor. Appl. Fract. Mech. 96, 720-739. doi: 10.1016/j.tafmec.2017.10.011 otwiera się w nowej karcie
  41. Sun, W., Hou, K., Yang, Z., and Wen, Y. (2017). X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression. Construct. Build. Mater. 138, 69-78. doi: 10.1016/j.conbuildmat.2017.01.088 otwiera się w nowej karcie
  42. Suzuki, H., Bae, S., and Kanematsu, M. (2016). Nanostructural deformation analysis of calcium silicate hydrate in portland cement paste by atomic pair distribution function. Adv. Mater. Sci. Eng. 2016, 1-6. doi: 10.1155/2016/8936084 otwiera się w nowej karcie
  43. Tordesillas, A., Cramer, A., and Walker, D. M. (2013). "Minimum cut and shear bands, "in Powders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media (Sydney, NSW: AIP Publishing), 507-510. doi: 10.1063/1.4811979 otwiera się w nowej karcie
  44. Tordesillas, A., Kahagalage, S., Ras, C., Nitka, M., and Tejchman, J. (2018). Interdependent evolution of robustness, force transmission and damage in a heterogeneous quasi-brittle granular material: from suppressed to cascading failure. arXiv preprint arXiv:1809.01491. Available online at: http://arxiv.org/ abs/1809.01491 otwiera się w nowej karcie
  45. Tordesillas, A., Pucilowski, S., Tobin, S., Kuhn, M. R., Andó, E., et al. (2015a). Shear bands as bottlenecks in force transmission. Europhys. Lett. 110:58005. doi: 10.1209/0295-5075/110/58005 otwiera się w nowej karcie
  46. Tordesillas, A., Tobin, S., Cil, M., Alshibli, K., and Behringer, R. P. (2015b). Network flow model of force transmission in unbonded and bonded granular media. Phys. Rev. E 91:062204. doi: 10.1103/PhysRevE.91.062204 otwiera się w nowej karcie
  47. van der Linden, J. H., Tordesillas, A., and Narsilio, G. A. (2019). Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport. Sci. Rep. 9, 1-15. doi: 10.1038/s41598-019-54699-6 otwiera się w nowej karcie
  48. van Mier, J. G. (1986). Multiaxial strain-softening of concrete. Mater. Struct. 19, 179-190. doi: 10.1007/BF02472034 otwiera się w nowej karcie
  49. van Mier, J. G. M., and van Vliet, M. R. A. (2002). Uniaxial tension test for the determination of fracture parameters of concrete: state of the art. Eng. Fract. Mech. 69, 235-247. doi: 10.1016/S0013-7944(01)00087-X Van Vliet, M. R., and Van Mier, J. G. (1999). "Effect of strain gradients on the size effect of concrete in uniaxial tension, " in Fracture Scaling, Z. P. Bazant and Y. D. S. Rajapakse (Dordrecht: Springer), 195-219. doi: 10.1007/978-94-011-4659-3_11 otwiera się w nowej karcie
  50. Vu, C.-C., Amitrano, D., Plé, O., and Weiss, J. (2019). Compressive failure as a critical transition: Experimental evidence and mapping onto the universality class of depinning. Phys. Rev. Lett. 122:015502. doi: 10.1103/PhysRevLett.122.01 otwiera się w nowej karcie
  51. West, B., and Scafetta, N. (2010). Disrupted networks: from physics to climate change. Studies of nonlinear phenomena in life sciences. World Sci. 13, 1-68; 253-261. doi: 10.1142/7714 otwiera się w nowej karcie
  52. Xiao, J., Li, W., Corr, D. J., and Shah, S. P. (2012).
  53. J. Mater. Civil Eng. 25, 504-518. doi: 10.1061/(ASCE)MT.1943-5533.00 otwiera się w nowej karcie
  54. Xiao, J., Li, W., Sun, Z., Lange, D. A., and Shah, S. P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement Concrete Composites 37, 276-292. doi: 10.1016/j.cemconcomp.2013.01.006 otwiera się w nowej karcie
  55. Yin, H., Qi, H. J., Fan, F., Zhu, T., Wang, B., and Wei, Y. (2015). otwiera się w nowej karcie
  56. Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918-1924. doi: 10.1021/nl5047686 otwiera się w nowej karcie
  57. Zhao, T., Crosta, G. B., Dattola, G., and Utili, S. (2018). Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses. J. Geophys. Res. Solid Earth 123, 3250-3269. doi: 10.1002/2017JB015210 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 118 razy

Publikacje, które mogą cię zainteresować

Meta Tagi