Abstrakt
We are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated learning to determine optimal integration strategies for enhanced security and the challenges posed by diverse datasets. Experiments utilized deep learning models, three domain adaptation methods, and a federated learning framework, focusing on mammography imaging for breast cancer detection. Results indicate a notable improvement of up to 20% with domain adaptation and an additional 10% with federated learning integration.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Erimus Ł., Borowska A., Jaromin A., Lewko A., Rumiński J.: Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem// / : , 2024,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi61632.2024.10613534
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 5 razy