Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power - Publikacja - MOST Wiedzy

Wyszukiwarka

Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power

Abstrakt

When systems of simple geometry like pipes or regular channels are considered, the mechan- ical energy loss of the fluid flow can be expressed by local and longitudinal empirical energy loss coefficients. However, in the case of large spatially distributed objects, there are no simple approaches to this task. In practice, general recommendations addressing different types of objects are used, but they usually provide very coarse estimates of energy loss. In this work, a new methodology for determination of mechanical energy loss in steady flow is proposed. This methodology is based on the observation that the magnitude of the power of energy dissipation in turbulent flow can be determined using the averaged flow velocity and turbulent viscosity coefficient. To highlight this possibility, an analysis of the magnitudes of the power of the main and fluctuating components of turbulent flow is presented. The correctness of the method is verified using an example of laminar and turbulent flows in a circular pipe. The results obtained show clearly that the proposed methodology can be used for mechanical energy loss determination in flow objects. This methodology can be used as a basis for mechanical energy loss determination in different types of flow objects.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 51 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Archives of Hydro-Engineering and Environmental Mechanics nr 64, wydanie 2, strony 73 - 85,
ISSN: 1231-3726
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Artichowicz W., Sawicki J.: Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power// Archives of Hydro-Engineering and Environmental Mechanics. -Vol. 64., iss. 2 (2017), s.73-85
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1515/heem-2017-0005
Bibliografia: test
  1. Artichowicz W., Szymkiewicz R. (2014) Computational issues of solving the 1D steady gradually varied flow equation, J. Hydrol. Hydromech., 62 (3), 226Ő-233, DOI: 10.2478/johh-2014-0031. otwiera się w nowej karcie
  2. ATV-DWA rules and standards (2000) http://en.dwa.de/ 2017.
  3. Badur J. (2009) The development of the energy concept (in Polish), IMP PAN, Gdańsk.
  4. Bardina J. E., Huang P. G., Coakley T. J. (1997) Turbulence Modeling Validation, Testing, and Devel- opment, NASA Technical Memorandum 110446. otwiera się w nowej karcie
  5. Chanson H. (2004) The Hydraulics of Open Channel Flow: An Introduction, Second Edition, Elsevier, Oxford. otwiera się w nowej karcie
  6. Chow V. T. (1959) Open-channel Hydraulics, McGraw-Hill/Kogakusha Company LTD, Tokyo. Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power 85
  7. Cunge J. A., Holly F. M., Verwey A. (1979) Practical Aspects of Computational River Hydraulics, Pitman, London. otwiera się w nowej karcie
  8. Darcy H. (1857) Recherches experimentales relatives an mouvement de l'eaux daus les tuyaux, Mallet-Bachelier, Paris.
  9. French R. H. (1985) Open Channel Hydraulics, McGraw-Hill, New York.
  10. Harlow F. H., Nakayama P. T. (1968) Transport of Turbulence Energy Decay Rate, Los Alamos Scientific laboratory, Report LA-3854, Univeristy of California. otwiera się w nowej karcie
  11. Landau L. D., Lifshitz E. M. (1987) Fluid Mechanics, Second Edition (Course of Theoretical Physics), Elsevier Butterworth Heinemann, Oxford. otwiera się w nowej karcie
  12. Launder B. E., Spalding D. B. (1972) Lectures in Mathematical Models of Turbulence, Academic Press, New York-London.
  13. Lojcjanskij Ł. G. (1973) Mechanics of Liquids and Gases (in Russian), Nauka, Moscow.
  14. Massey B., Ward-Smith J. (1998) Mechanics of Fluids, Stanley Thornes Ltd. Cheltenham, UK. Prandtl L. (1956) Dynamics of Flows (Polish translation), PWN, Warsaw. Puzyrewski R., Sawicki J. M. (2000) Fundamentals of Fluid Mechanics and Hydraulics (in Polish), 3 rd ed., PWN, Warsaw.
  15. Slattery J. C. (1999) Advanced Transport Phenomena, University Press, Cambridge, UK. Tennekes H., Lumley J. T. (1972) A First Course in Turbulence, MIT Press, Cambridge, USA.
  16. Vuik C. (1993) Some historical notes on the Stefan problem, Nieuw. Archief voor Wiskunde, 4e serie, 11 (2), 157-167. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 193 razy

Publikacje, które mogą cię zainteresować

Meta Tagi