Effective degradation of sulfide ions and organic sulfides in cavitation-based Advanced Oxidation Processes (AOPs) - Publikacja - MOST Wiedzy

Wyszukiwarka

Effective degradation of sulfide ions and organic sulfides in cavitation-based Advanced Oxidation Processes (AOPs)

Abstrakt

The paper presents the results of investigations on the effectiveness and reaction rate constants of the oxidation of sulfide ions and organic sulfides in real industrial effluents from the production of bitumens (2000 mg S2- L-1) using hydrodynamic and acoustic cavitation. The content of the effluents was analysed in terms carbon disulfide, dimethyl sulfide, and di-tert-butyl disulfide concentration. A possibility of complete oxidation of sulfides by cavitation alone as well as by its combination with external oxidants such as hydrogen peroxide, ozone or peroxone was demonstrated. The oxidation time for the most effective processes is as little as 15 min. Due to the presence of sulfide ions, the effluents from the production of bitumens were oxidized at a strongly alkaline pH. The results of this study reveal the advantage of performing advanced oxidation processes (AOPs) at a basic pH. The effective degradation of sulfide ions enables performance of further degradation of organic contaminants at an acidic pH, ensuring high efficiency of treatment based, for example, on the Fenton reaction without the risk of release of hydrogen sulfide to the atmosphere. The results of this research are applicable to all kinds of caustic effluents for which the lack of possibility of pH adjustment limits their efficient treatment.

Cytowania

  • 1 6

    CrossRef

  • 1 0

    Web of Science

  • 1 3

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ULTRASONICS SONOCHEMISTRY nr 58, strony 1 - 6,
ISSN: 1350-4177
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Gągol M., Soltani R., Przyjazny A., Boczkaj G.: Effective degradation of sulfide ions and organic sulfides in cavitation-based Advanced Oxidation Processes (AOPs)// ULTRASONICS SONOCHEMISTRY. -Vol. 58, (2019), s.1-6
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ultsonch.2019.05.027
Bibliografia: test
  1. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, Ultrason. Sonochem. 15 (2008) 49-54. otwiera się w nowej karcie
  2. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton pro- cessing, Chem. Eng. J. 152 (2009) 498-502. otwiera się w nowej karcie
  3. L.P. Ramteke, P.R. Gogate, Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreat- ment using Fenton/ultrasound based processes, J. Ind. Eng. Chem. 28 (2015) 247-260. otwiera się w nowej karcie
  4. P.R. Gogate, G.S. Bhosale, Comparison of effectiveness of acoustic and hydrody- namic cavitation in combined treatment schemes for degradation of dye waste- waters, Chem. Eng. Process. 71 (2013) 59-69. otwiera się w nowej karcie
  5. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation -a review, Chem. Eng. J. 338 (2018) 599-627. otwiera się w nowej karcie
  6. R.D.C. Soltani, M. Safari, Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization, Ultrason. Sonochem. 32 (2016) 181-190.
  7. O. Acisli, A. Khataee, R.D.C. Soltani, S. Karaca, Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reac- tive yellow 81 in aqueous phase, Ultrason. Sonochem. 35 (2017) 210-218. otwiera się w nowej karcie
  8. P.S. Kumar, M. Sivakumar, A.B. Pandit, Experimental quantification of chemical ef- fects of hydrodynamic cavitation, Chem. Eng. Sci. 55 (2000) 1633-1639.
  9. P. Thanekar, P.R. Gogate, Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent, Ultrason. Sonochem. 53 (2019) 202-213. otwiera się w nowej karcie
  10. S.M. Joshi, P.R. Gogate, Treatment of landfill leachate using different configura- tions of ultrasonic reactors combined with advanced oxidation processes, Sep. Pu- rif. Technol. 211 (2019) 10-18. otwiera się w nowej karcie
  11. P.R. Gogate, Cavitational reactors for process intensification of chemical processing applications: a critical review, Chem. Eng. Process. 47 (2008) 515-527. otwiera się w nowej karcie
  12. N.N. Mahamuni, G.A. Yusuf, Advanced oxidation processes (AOPs) involving ultra- sound for waste water treatment: a review with emphasis on cost estimation, Ultra- son. Sonochem. 17 (2010) 990-1003. otwiera się w nowej karcie
  13. P.R. Gogate, S. Mededovic-Thagard, D. McGuire, G. Chapas, J. Blackmon, R. Cathey, Hybrid reactor based on combined cavitation and ozonation: From concept to practical reality, Ultrason. Sonochem. 21 (2014) 590-598. otwiera się w nowej karcie
  14. Y. Xiong, F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Mining Sci. Technol. 25 (2015) 523-529. otwiera się w nowej karcie
  15. E. Kociołek-Balawejder, Removal of residual sulfides from aqueous solutions by re- active polymers, Przem. Chem. 82 (2003) 1032-1033.
  16. S. Salwiczek, K. Barbusiński, K. Kutek, Sulfate ion removal from match production wastewater with calcium aluminate cement, Przem. Chem. 93 (2014) 1552-1556.
  17. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of ef- fluents from production of bitumens under basic pH conditions using hydrody- namic cavitation aided by external oxidants, Ultrason. Sonochem. 40 (2018) 969-979. otwiera się w nowej karcie
  18. M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultra- son. Sonochem. 45 (2018) 257-266. otwiera się w nowej karcie
  19. M. Gągol, A. Przyjazny, G. Boczkaj, Effective method of treatment of industrial ef- fluents under basic pH conditions using acoustic cavitation -a comprehensive comparison with hydrodynamic cavitation processes, Chem. Eng. Process. 128 (2018) 103-113. otwiera się w nowej karcie
  20. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  21. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. otwiera się w nowej karcie
  22. F. Sepyani, R.D.C. Soltani, S. Jorfi, H. Godini, M. Safari, Implementation of contin- uously electro-generated Fe3O4 nanoparticles for activation of persulfate to de- compose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensifi- cation, J. Environ. Manage. 224 (2018) 315-326. otwiera się w nowej karcie
  23. R.D.C. Soltani, M. Mashayekhi, S. Jorfi, A. Khataee, M.J. Ghanadzadeh, M. Sil- lanpää, Implementation of martite nanoparticles prepared through planetary ball milling as a heterogeneous activator of oxone for degradation of tetracycline an- tibiotic: ultrasound and peroxy-enhancement, Chemosphere 210 (2018) 699-708.
  24. J. Zeyer, P. Eicher, S.G. Wakeham, R.P. Schwarzenbach, Oxidation of dimethyl sul- fide to dimethyl sulfoxide by phototrophic purple bacteria, Appl. Environ. Micro- biol. 53 (1987) 2026-2032. otwiera się w nowej karcie
  25. I. Barnes, K.H. Becker, I. Patroescu, FTIR product study of the OH initiated oxida- tion of dimethyl sulfide: observation of carbonyl sulphide and dimethyl sulphox- ide, Atmos. Environ. 30 (1996) 1805-1814. otwiera się w nowej karcie
  26. P. Amels, H. Elias, K.J. Wannowius, Kinetics and mechanism of the oxidation of di- methyl sulfide by hydroperoxides in aqueous medium, J. Chem. Soc., Faraday Trans. 93 (1997) 2537-2544. otwiera się w nowej karcie
  27. R.C. Bouillon, W. Miller, Photodegradation of Dimethyl Sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation, En- viron. Sci. Technol. 39 (2005) 9471-9477. otwiera się w nowej karcie
  28. A.A. Turnipseed, S.B. Barone, A.R. Ravishankara, Reaction of OH with dimethyl sulfide. 2. Products and mechanisms, J. Phys. Chem. 100 (1996) 14703-14713. otwiera się w nowej karcie
  29. Y.G. Adewuyi, G.R. Carmichael, Kinetics of hydrolysis and oxidation of carbon disulfide by hydrogen peroxide in alkaline medium and application to carbonyl sulfide, Environ. Sci. Technol. 21 (1987) 170-177.
  30. Y.G. Adewuyi, C. Appaw, Sonochemical oxidation of carbon disulfide in aqueous solutions: reaction kinetics and pathways, Ind. Eng. Chem. Res. 41 (2002) 4957-4964. otwiera się w nowej karcie
  31. D.A. Cogan, G. Liu, K. Kim, B.J. Backes, J.A. Ellman, Catalytic asymmetric oxida- tion of tert-butyl disulfide. Synthesis of tert-butanesulfinamides, tert-butyl sulfox- ides, and tert-butanesulfinimines, J. Am. Chem. Soc. 120 (1998) 811-819. otwiera się w nowej karcie
  32. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid microex- traction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petro- leum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. otwiera się w nowej karcie
  33. D. Elothmani, Q. Tho Do, J. Simonet, G. Le Guillanton, Anodic oxidation of di-tert-butyl disulfide: a facile method for the preparation of N-tert-ButyI amides, J. Chem. Soc. Chem. Commun. (1993) 715-717. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 24 razy

Publikacje, które mogą cię zainteresować

Meta Tagi