Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting - Publikacja - MOST Wiedzy


Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting


Thin layers of BiVO4/V2O5 were prepared on FTO substrates using pulsed laser deposition technique. The method of cobalt hexacyanocobaltate (Cohcc) synthesis on the BiVO4/V2O5 photoanodes consists of cobalt deposition followed by electrochemical oxidation of metallic Co in K3[Co(CN)6] aqueous electrolyte. The modified electrodes were tested as photoanodes for water oxidation under simulated sunlight irradiation. Deposited films were characterized using UV-Vis spectroscopy, Raman spectroscopy, and scanning electron microscopy. Since the V2O5 is characterized by a narrower energy bandgap than BiVO4, the presence of V2O5 shifts absorption edge (ΔE = ~0.25 eV) of modified films towards lower energies enabling the conversion of a wider range of solar radiation. The formation of heterojunction increases photocurrent of water oxidation measured at 1.2 V vs Ag/ AgCl (3 M KCl) to over 1 mA cm-2, while bare BiVO4 and V2O5 exhibit 0.37 and 0.08 mA cm-2, respectively. On the other hand, the modification of obtained layers with Cohcc shifts onset potential of photocurrent generation into a cathodic direction. As a result, the photocurrent enhancement at a wide range of applied potential was achieved.


  • 4


  • 4

    Web of Science

  • 4


Cytuj jako

Pełna treść

pobierz publikację
pobrano 30 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Electrocatalysis nr 11, strony 180 - 187,
ISSN: 1868-2529
Rok wydania:
Opis bibliograficzny:
Trzciński K., Szkoda M., Mirosław S., Lisowska-Oleksiak A.: Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting// Electrocatalysis -Vol. 11, (2020), s.180-187
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12678-019-00566-x
Bibliografia: test
  1. S.Y. Tee, K.Y. Win, W.S. Teo, L. Koh, S. Liu, C.P. Teng, Recent progress in energy-driven water splitting. Advanced Science News 4, 1600337 (2017). https://doi.org/10.1002/advs.201600337 otwiera się w nowej karcie
  2. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37-38 (1972). https://doi. org/10.1038/239137a0 otwiera się w nowej karcie
  3. J.K. Cooper, S. Gul, F.M. Toma, L. Chen, S. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, On the indirect bandgap and optical properties of monoclinic bismuth vanadate. Journal of Physical Chemistry C 119, 2969-2974 (2015). https://doi.org/10.1021/jp512169w otwiera się w nowej karcie
  4. S. Stoughton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sallis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tenne, N.J. Podraza, D.A. Muller, C. Adamo, D.G. Schlom, Adsorption- controlled growth of BiVO 4 by molecular-beam epitaxy. APL Materials 1, 42112 (2013). https://doi.org/10.1063/1.4824041 otwiera się w nowej karcie
  5. Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chemical Society Reviews 42, 2321-2337 (2013). https://doi.org/10.1039/ c2cs35260e otwiera się w nowej karcie
  6. K. Tolod, S. Hernández, N. Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7, 13 (2017). otwiera się w nowej karcie
  7. https://doi.org/10.3390/catal7010013 otwiera się w nowej karcie
  8. P. Chatchai, Y. Murakami, S. ya Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO 3 / BiVO 4 composite under visible light irradiation. Electrochimica Acta 54, 1147-1152 (2009). https://doi.org/10.1016/j.electacta. 2008.08.058 otwiera się w nowej karcie
  9. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co 3 O 4 /BiVO 4 photoanodes. Journal of the American Chemical Society 137, 8356-8359 (2015). https://doi. org/10.1021/jacs.5b04186 otwiera się w nowej karcie
  10. W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Environmental preparation of p-n junction Cu 2 O /BiVO 4 het- erogeneous nanostructures with enhanced visible-light photocata- lytic activity. Applied Catalysis B: Environmental 134-135, 293- 301 (2013). https://doi.org/10.1016/j.apcatb.2013.01.013 otwiera się w nowej karcie
  11. W.S. dos Santos, L.D. Almeida, A.S. Afonso, M. Rodriguez, J.P. Mesquita, D.S. Monteiro, L.C.A. Oliveira, J.D. Fabris, M.C. Pereira, Photoelectrochemical water oxidation over fibrous and sponge-like BiVO 4 /β-Bi 4 V 2 O 11 photoanodes fabricated by spray pyrolysis. Applied Catalysis B: Environmental 182, 247-256 (2016). https://doi.org/10.1016/j.apcatb.2015.09.034 otwiera się w nowej karcie
  12. Z. Tian, P. Zhang, P. Qin, D. Sun, S. Zhang, X. Guo, Novel Black BiVO 4 /TiO 2 − x Photoanode with enhanced photon absorption and charge separation for efficient and stable solar water splitting. Advanced Energy Materials 1901287, 1-8 (2019). https://doi.org/ 10.1002/aenm.201901287 otwiera się w nowej karcie
  13. K. Trzciński, M. Szkoda, M. Sawczak, J. Karczewski, A. Lisowska- Oleksiak, Visible light activity of pulsed layer deposited BiVO 4 / MnO 2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Applied Surface Science 385, 199 (2016). https://doi.org/10.1016/j.apsusc.2016.05.115 otwiera się w nowej karcie
  14. H. Jiang, M. Nagai, K. Kobayashi, Enhanced photocatalytic activity for degradation of methylene blue over V 2 O 5 /BiVO 4 composite. Journal of Alloys and Compounds 479, 821-827 (2009). https:// doi.org/10.1016/j.jallcom.2009.01.051 otwiera się w nowej karcie
  15. Y. Wang, Y. Long, D. Zhang, Novel bifunctional V 2 O 5 /BiVO 4 nanocomposite materials with enhanced antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers 68, 387- 395 (2016). https://doi.org/10.1016/j.jtice.2016.10.001 otwiera się w nowej karcie
  16. A.T. Oliveira, M. Rodriguez, T.S. Andrade, H.E.A. De Souza, A.C. Silva, L.L. Nascimento, A.O.T. Patrocínio, High water oxidation performance of W-Doped BiVO 4 photoanodes coupled to V 2 O 5 rods as a photoabsorber and hole carrier. RRL Solar 1800089, 1- 8 (2018). https://doi.org/10.1002/solr.201800089 otwiera się w nowej karcie
  17. C.S. Yaw, Q. Ruan, J. Tang, A.K. Soh, M.N. Chong, A Type II n-n staggered orthorhombic V 2 O 5 /monoclinic clinobisvanite BiVO 4 heterojunction photoanode for photoelectrochemical water oxida- tion: Fabrication, characterisation and experimental validation. Chemical Engineering Journal 364, 177 (2019). https://doi.org/10. 1016/j.cej.2019.01.179 otwiera się w nowej karcie
  18. X. Xu, S. Kou, X. Guo, X. Li, H. Mao, The enhanced photocatalytic properties for water oxidation over Bi/ BiVO 4 /V 2 O 5 composite. Journal of Physical Chemistry C 121, 2-10 (2017). https://doi. org/10.1021/acs.jpcc.7b03119 otwiera się w nowej karcie
  19. M. Arunachalam, K. Ahn, S. Hyung, ScienceDirect Oxygen evo- lution NiOOH catalyst assisted V 2 O 5 @BiVO 4 inverse opal hetero- structure for solar water oxidation. International Journal of Hydrogen Energy 44, 4656-4663 (2018). https://doi.org/10.1016/ j.ijhydene.2019.01.024 otwiera się w nowej karcie
  20. T.W. Kim, K.-S.K.-S. Choi, Nanoporous BiVO 4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science (80) 343, 990 (2014). https://doi.org/10.1126/science. 1246913 20. Y. Ma, F. Le Formal, A. Kafizas, S.R. Pendlebury, J.R. Durrant, Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. Journal of Materials Chemistry A 3, 20649-20657 (2015). https://doi.org/10.1039/c5ta05826k otwiera się w nowej karcie
  21. S. Wang, P. Chen, J.H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO 4 photoanode for efficient photoelectrochemical water splitting. Angewandte Chemie, International Edition 56, 8500- 8504 (2017). https://doi.org/10.1002/anie.201703491 otwiera się w nowej karcie
  22. C. Zachäus, F.F. Abdi, L.M. Peter, R. Van De Krol, Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis. Chemical Science 8, 3712-3719 (2017). https://doi.org/10.1039/ c7sc00363c otwiera się w nowej karcie
  23. F. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. Lopez, J.R. Galan-Mascaros, S. Gimenez, Cobalt hexacyanoferrate on BiVO 4 photoanodes for robust water splitting. ACS Applied Materials & Interfaces 9, 37671 (2017). https://doi.org/10.1021/ acsami.7b09449 otwiera się w nowej karcie
  24. E.P. Alsaç, E. Ülker, S.V.K. Nune, Y. Dede, F. Karadas, Tuning the electronic properties of Prussian blue analogues for efficient water oxidation electrocatalysis: experimental and computational studies. Chemistry -A European Journal 24, 4856-4863 (2018). https://doi. org/10.1002/chem.201704933 otwiera się w nowej karcie
  25. M.N. Shaddad, P. Arunachalam, J. Labis, M. Hezam, Fabrication of robust nanostructured (Zr)BiVO 4 /nickel hexacyanoferrate core/ shell photoanodes for solar water splitting. Applied Catalysis B: Environmental 244, 863-870 (2019). https://doi.org/10.1016/j. apcatb.2018.11.079 otwiera się w nowej karcie
  26. B. Moss, F.S. Hegner, S. Corby, S. Selim, L. Francas-Forcada, N. Lopez, S. Gimenez, J.R. Galan-Mascarós, J.R. Durrant, Unraveling Charge-transfer in CoFe-Prussian blue modified BiVO 4 photoanodes. ACS Energy Letters 4, 337 (2019). https://doi.org/ 10.1021/acsenergylett.8b02225 otwiera się w nowej karcie
  27. K. Trzciński, M. Szkoda, K. Szulc, M. Sawczak, A. Lisowska- Oleksiak, The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation. Electrochimica Acta 295, 410-417 (2019). https://doi.org/10.1016/j.electacta.2018.10.167 otwiera się w nowej karcie
  28. K. Honma, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication, microstructure and electrical conductivity of V 2 O 5 ceramics. Materials Research Bulletin 31, 531-537 (1996). https://doi.org/ 10.1016/S0025-5408(96)00015-3 otwiera się w nowej karcie
  29. S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO 4 as a Visible-light photocatalyst prepared by ultrasonic spray pyrolysis. Journal of Physical Chemistry C 113, 11980-11983 (2009). https://doi.org/ 10.1021/jp903757x otwiera się w nowej karcie
  30. M. Hu, N.L. Torad, Y. Yamauchi, Preparation of various Prussian blue analogue hollow nanocubes with Single Crystalline Shells. Eur J Inorg Chem, 4795-4799 (2012). https://doi.org/10.1002/ejic. 201200654 otwiera się w nowej karcie
  31. R.L. Frost, D. Henry, M.L. Weier, W. Martens, Raman spectrosco- py of three polymorphs of BiVO 4 : clinobisvanite, dreyerite and pucherite, with comparisons to (VO 4 ) 3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Specroscopy 37, 722 (2006). https://doi.org/10.1002/jrs.1499 otwiera się w nowej karcie
  32. C.V. Ramana, O.M. Hussain, B.S. Naidu, P.J. Reddy, Spectroscopic characterization of electron-beam evaporated V 2 O 5 thin films. Thin Solid Films 305, 219-226 (1997). https://doi.org/10.1016/S0040- 6090(97)00141-7 otwiera się w nowej karcie
  33. S.F.A. Kettle, E. Diana, E.M.C. Marchese, E. Boccaleri, P. Luigi, The vibrational spectra of the cyanide ligand revisited : the ν(CN) infrared and Raman spectroscopy of Prussian blue and its ana- logues. Journal of Raman Specroscopy 2011, 2006-2014 (2014). otwiera się w nowej karcie
  34. https://doi.org/10.1002/jrs.2944 otwiera się w nowej karcie
  35. J. Roque, E. Reguera, J. Balmaseda, J. Rodríguez-Hernández, L. Reguera, L.F. del Castillo, Porous hexacyanocobaltates(III): Role of the metal on the framework properties. Microporous and Mesoporous Materials 103, 57-71 (2007). https://doi.org/10.1016/ j.micromeso.2007.01.030 otwiera się w nowej karcie
  36. B. Zhou, J. Qu, X. Zhao, H. Liu, Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO 4 thin-film electrode. Journal of Environmental Sciences 23, 151-159 (2011). https://doi.org/10.1016/S1001-0742(10) 60387-7 otwiera się w nowej karcie
  37. K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and elec- trochemical preparation method of Prussian blue modified elec- trodes. Journal of the American Chemical Society 104, 4767- 4772 (1982). https://doi.org/10.1021/ja00382a006 otwiera się w nowej karcie
  38. J. Su, X.-X. Zou, G.-D. Li, X. Wei, C. Yan, Y.-N. Wang, J. Zhao, L.- J. Zhou, J.-S. Chen, Macroporous V 2 O 5 − BiVO 4 composites: ef- fect of heterojunction on the behavior of photogenerated charges. Journal of Physical Chemistry C 115, 8064-8071 (2011). https:// doi.org/10.1021/jp200274k otwiera się w nowej karcie
  39. M. Yao, P. Wu, S. Cheng, L. Yang, Y. Zhu, M. Wang, H. Luo, B. Wang, D. Ye, M. Liu, Investigation into the energy storage behav- iour of layered α-V 2 O 5 as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance. Physical Chemistry Chemical Physics 19, 24689-24695 (2017). otwiera się w nowej karcie
  40. https://doi.org/10.1039/c7cp04612j otwiera się w nowej karcie
  41. Q.T. Qu, Y. Shi, L.L. Li, W.L. Guo, Y.P. Wu, H.P. Zhang, S.Y. Guan, R. Holze, V 2 O 5 0.6H 2 O nanoribbons as cathode material f o r a s y m m e t ri c s u p e r ca p a c i t o r i n K 2 S O 4 s o l u t io n . Electrochemistry Communications 11, 1325-1328 (2009). https:// doi.org/10.1016/j.elecom.2009.05.003 otwiera się w nowej karcie
  42. Q.T. Qu, L.L. Liu, Y.P. Wu, R. Holze, Electrochemical behavior of V 2 O 5 0.6H 2 O nanoribbons in neutral aqueous electrolyte solution. Electrochimica Acta 96, 8-12 (2013). https://doi.org/10.1016/j. electacta.2013.02.078 otwiera się w nowej karcie
  43. V. Maurice, S. Zanna, J. Swiatowska-mrowiecka, L. Klein, P. Marcus, XPS study of Li ion intercalation in V 2 O 5 thin films pre- pared by thermal oxidation of vanadium metal. Electrochimica Acta 52, 5644-5653 (2007). https://doi.org/10.1016/j.electacta. 2006.12.050 otwiera się w nowej karcie
  44. S.D. Perera, A.D. Liyanage, N. Nijem, J.P. Ferraris, Y.J. Chabal, K.J. Balkus, Vanadium oxide nanowire -Graphene binder free nanocomposite paper electrodes for supercapacitors : A facile green approach. Journal of Power Sources 230, 130-137 (2013). https:// doi.org/10.1016/j.jpowsour.2012.11.118 otwiera się w nowej karcie
  45. N. Cvjetic, I. Pašti, M. Mitric, I. Stojkovic, Electrochemical behav- iour of V 2 O 5 xerogel in aqueous LiNO 3 solution. Electrochemistry Communications 11, 1512-1514 (2009). https://doi.org/10.1016/j. elecom.2009.05.043 otwiera się w nowej karcie
  46. Y. Ma, S.R. Pendlebury, A. Reynal, F. Le Formal, J.R. Durrant, Dynamics of photogenerated holes in undoped BiVO 4 photoanodes for solar water oxidation. Chemical Science 5, 2964-2973 (2014). otwiera się w nowej karcie
  47. https://doi.org/10.1039/c4sc00469h otwiera się w nowej karcie
  48. Publisher's Note Springer Nature remains neutral with regard to jurisdic- tional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statusowa
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi