Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation - Publikacja - MOST Wiedzy

Wyszukiwarka

Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation

Abstrakt

Purpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and approximation-based representation of the structure, as well as model correction techniques. The considered approach is suitable for handling various problems pertinent to design of microwave and antenna structures. Numerical case studies are provided demonstrating feasibility of the segmentation-based framework for design of real-world structures in setups with two and three objectives. Findings Formulation of appropriate design problem enables identification of the search space region containing Pareto front which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments. Research limitations/implications The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments.

Cytowania

  • 2

    CrossRef

  • 1

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 19 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENGINEERING COMPUTATIONS nr 37, strony 753 - 788,
ISSN: 0264-4401
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kozieł S., Bekasiewicz A.: Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation// ENGINEERING COMPUTATIONS -Vol. 37,iss. 2 (2020), s.753-788
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1108/ec-01-2019-0004
Bibliografia: test
  1. S. Chamaani, M.S. Abrishamian, S.A. Mirtaheri, -Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization,‖ IEEE Ant. Wireless Prop. otwiera się w nowej karcie
  2. Lett., vol. 9, pp. 666-669, 2010. otwiera się w nowej karcie
  3. A. Bekasiewicz and S. Koziel, -A novel structure and design optimization of compact spline-parameterized UWB slot antenna,‖ Metrology and Measurement Systems, vol. 23, no. 4, pp. 637-643, 2016.
  4. M.S. Khan, A.-D. Capobianco, A. Iftikhar, S. Asif, and B.D. Braaten, -A compact dual polarized ultrawideband multiple-input-multiple-output antenna,‖ Microw. Opt. Tech. Lett., vol. 58, no. 1, pp. 163-166, 2016. otwiera się w nowej karcie
  5. M.G.N. Alsath and M. Kanagasabai, -Compact UWB monopole antenna for automotive communications,‖ IEEE Trans. Ant. Prop., vol. 63, no. 9, pp. 4204-4208, 2015. otwiera się w nowej karcie
  6. L. Liu, S.W. Cheung, Y.F. Weng and T.I. Yuk -Cable effects on measuring small planar UWB monopole antennas,‖ in M.A. Matin (ed.) Ultra Wideband -Current Status and Future Trends, Intech, 2012. otwiera się w nowej karcie
  7. S. Koziel and A. Bekasiewicz, Multi-objective design of antennas using surrogate models, World Scientific, 2016. otwiera się w nowej karcie
  8. S. Koziel and P. Kurgan, -Low-cost optimization of compact branch-line couplers and its application to miniaturized Butler matrix design,‖ European Microwave Conference, Rome, pp. 227-230, 2014. otwiera się w nowej karcie
  9. T. Li, H. Zhai, G. Li, L. Li, and C. Lian,-Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator,‖ IEEE Ant. Wireless Prop. Lett., vol. 11, pp. 724-727, 2012.
  10. S. Mohammadi, J. Nourinia, C. Ghobadi, J. Pourahmadazar, and M. Shokri, -Compact broadband circularly polarized slot antenna using two linked elliptical slots for C-band applications,‖ IEEE Ant. Wireless Prop. Lett., vol. 12, pp. 1094-1097, 2013. otwiera się w nowej karcie
  11. L. Wang, L. Xu, X. Chen, R. Yang, L. Han, W. Zhang, -A compact ultrawideband diversity antenna with high isolation,‖ IEEE Ant. Wireless Prop. Lett., vol. 13, pp. 35-38, 2014.
  12. A. Bekasiewicz, S. Koziel, and W. Zieniutycz, -A structure and design optimization of novel compact microscrip dual-band rat-race coupler with enhanced bandwidth,‖ Microwave and Optical Technology Letters, vol. 58, no. 10, pp. 2287-2291, 2016. otwiera się w nowej karcie
  13. M.A. El Sabbagh, M.H. Bakr, and J.W. Bandler, -Adjoint higher order sensitivities for fast full-wave optimization of microwave filters,‖ IEEE Trans. Microw Theory Tech., vol. 54, pp. 3339-3351, 2006. otwiera się w nowej karcie
  14. J. Wang, X. S. Yang and B. Z. Wang, -Efficient gradient-based optimisation of pixel antenna with large-scale connections,‖ IET Microwaves, Antennas & Propagation, vol. 12, no. 3, pp. 385-389, 2 28 2018. otwiera się w nowej karcie
  15. A. Bekasiewicz, and S. Koziel, -Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity,‖ International Journal of RF and Microwave Computer- Aided Engineering, vol. 25, no. 2, pp. 178-183, 2015. otwiera się w nowej karcie
  16. M. Ghassemi, M. Bakr and N. Sangary, -Antenna design exploiting adjoint sensitivity- based geometry evolution,‖ IET Microwaves Ant. Prop., vol. 7, no. 4, pp. 268-276, 2013. otwiera się w nowej karcie
  17. A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, M.W. Trosset -A rigorous framework for optimization of expensive functions by surrogates,‖ Structural Optimization, vol. 17, no. 1, pp. 1-13, 1999. otwiera się w nowej karcie
  18. M. T. Mehari et al., "Efficient Identification of a Multi-Objective Pareto Front on a Wireless Experimentation Facility," in IEEE Transactions on Wireless Communications, vol. 15, no. 10, pp. 6662-6675, Oct. 2016. otwiera się w nowej karcie
  19. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, -Surrogate-based analysis and optimization,‖ Progress in Aerospace Sciences, vol. 41, no. 1, pp. 1-28, Jan. 2005. otwiera się w nowej karcie
  20. A.I.J. Forrester, and A.J. Keane, -Recent advances in surrogate-based optimization,‖ Progress in Aerospace Sciences, vol. 45, pp. 50-79, 2009. otwiera się w nowej karcie
  21. S. Koziel, and J.W. Bandler, -Space mapping with multiple coarse models for optimization of microwave components,‖ IEEE Microw. Wireless Comp. Lett., vol. 18, pp. 1-3, 2008. otwiera się w nowej karcie
  22. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, -Space mapping: the state of the art,‖ IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004. otwiera się w nowej karcie
  23. S. Koziel, S. Ogurtsov, -Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations,‖ IET Microwaves Ant. Prop., vol. 6, no. 15, pp. 1643-1650, 2012. otwiera się w nowej karcie
  24. S. Koziel, L. Leifsson, and S. Ogurtsov, -Reliable EM-driven microwave design optimization using manifold mapping and adjoint sensitivity,‖ Microwave Opt. Tech. Lett., vol. 55, pp. 809-813, 2013. otwiera się w nowej karcie
  25. I.T. Nassar, H. Tsang, D. Bardroff, C.P. Lusk, and T.M. Weller, -Mechanically reconfigurable, dual-band slot dipole antennas,‖ IEEE Trans. Ant. Prop., vol. 63, no. 7, pp. 3267-3271, 2015. otwiera się w nowej karcie
  26. G.L. Huang, S.G. Zhou, and T. Yuan, -Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder-jetting technique,‖ IEEE Trans. otwiera się w nowej karcie
  27. Comp., Packaging Manuf. Technol., vol. 7, no. 2, pp. 254-260, 2017.
  28. L. Liu, S.W. Cheung, and T.I. Yuk, -Compact MIMO antenna for portable devices in UWB applications,‖ IEEE Trans. Antennas Prop., vol. 61, no. 8, pp. 4257-4264, 2013. otwiera się w nowej karcie
  29. Y. Kuwahara, -Multiobjective optimization design of Yagi-Uda antenna,‖ IEEE Trans. Ant. Prop., vol. 53, no. 6, pp. 1984-1992, 2005. otwiera się w nowej karcie
  30. Y.M. Pan, K.W. Leung, and K. Lu, -Compact quasi-isotropic dielectric resonator antenna with small ground plane,‖ IEEE Trans. Ant. Prop., vol. 62, no. 2, pp. 577-585, 2014. otwiera się w nowej karcie
  31. J. Liu, K.P. Esselle, S.G. Hay and S. Zhong, "Effects of Printed UWB Antenna Miniaturization on Pulse Fidelity and Pattern Stability," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 8, pp. 3903-3910, Aug. 2014. otwiera się w nowej karcie
  32. M. Ur-Rehman, Q.H. Abbasi, M. Akram, C. Parini, -Design of band-notched ultra wideband antenna for indoor and wearable wireless communications,‖ IET Microwaves, Ant. Prop., vol. 9, no. 3, pp. 243-251, 2015. otwiera się w nowej karcie
  33. K.R. Jha, B. Bukhari, C. Singh, G. Mishra and S.K. Sharma, "Compact Planar Multistandard MIMO Antenna for IoT Applications," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3327-3336, July 2018. otwiera się w nowej karcie
  34. Q.-X. Chu, C.-X. Mao, H. Zhu, -A Compact Notched Band UWB Slot Antenna With Sharp Selectivity and Controllable Bandwidth,‖ IEEE Trans. Ant. Prop., vol. 61, no. 8, pp. 3961-3966, 2013. otwiera się w nowej karcie
  35. S. Koziel and A. Bekasiewicz, -Fast multi-objective surrogate-assisted design of multi- parameter antenna structures through rotational design space reduction,‖ IET Microwaves, Antennas & Propagation, vol. 10, no. 6, pp. 624-630, 2016. otwiera się w nowej karcie
  36. C.-H. Tseng, and C.-L. Chang, -A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures,‖ IEEE Trans. Microw. Theory Techn. vol. 60, no. 7, pp. 2085-2092, 2012. otwiera się w nowej karcie
  37. C.-H. Tseng, and H.-J. Chen, -Compact Rat-Race Coupler Using Shunt-Stub-Based Artificial Transmission Lines,‖ IEEE Microw. Wireless Comp. Lett.., vol. 18, no. 11, pp. 734-736, 2008. otwiera się w nowej karcie
  38. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform transmission lines,‖ Microwave Opt. Tech. Lett., vol. 56, no. 4, pp. 970-974, 2014. otwiera się w nowej karcie
  39. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, USA: Wiley, 2001. otwiera się w nowej karcie
  40. S. Koziel, and S. Ogurtsov, -Multi-objective design of antennas using variable-fidelity simulations and surrogate models,‖ IEEE Trans. Ant. Prop., vol. 61, no. 12, pp. 5931-5939, 2013. otwiera się w nowej karcie
  41. X.-S. Yang, K.T. Ng, S.H. Yeung, K.F. Man, -Jumping Genes Multiobjective Optimization Scheme for Planar Monopole Ultrawideband Antenna,‖ IEEE Trans. Ant. Prop., vol. 56, no. 12, pp. 3659-3666, 2008. otwiera się w nowej karcie
  42. C.A. Coello Coello, G.B. Lamont, and D.A. van Veldhuizen, Evolutionary algorithms for solving multi-objective problems, 2nd ed, Springer-Verlag, New York, 2007.
  43. H. Choo, R.L. Rogers, H. Ling, -Design of electrically small wire antennas using a Pareto genetic algorithm,‖ IEEE Trans. Ant. Prop., vol. 53, no. 3, pp. 1038-1046, 2005.
  44. N. Jin and Y. Rahmat-Samii, -Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,‖ IEEE Trans. Ant. Prop., vol. 55, no. 3, pp. 556-567, 2007. otwiera się w nowej karcie
  45. R. Li, L. Xu, W. Hu, Y.Z. Yin and X.W. Shi, "Low-cross-polarisation synthesis of conformal antenna arrays using a balanced dynamic differential evolution algorithm," in IET Microwaves, Antennas & Propagation, vol. 11, no. 13, pp. 1853-1860, 10 20 2017. otwiera się w nowej karcie
  46. P. Baumgartner et al., "Multi-Objective Optimization of Yagi-Uda Antenna Applying Enhanced Firefly Algorithm With Adaptive Cost Function," in IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, March 2018. otwiera się w nowej karcie
  47. L. dos Santos Coelho, T.C. Bora, F. Schauenburg and P. Alotto, "A Multiobjective Firefly Approach Using Beta Probability Distribution for Electromagnetic Optimization Problems," in IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2085-2088, May 2013. otwiera się w nowej karcie
  48. D.E. Goldberg and J. Richardson, -Genetic algorithms with sharing for multimodal function optimization,‖ Proc. Int. Conf. Genetic Algorithms App., pp. 41-49, Hillsdale, 1987.
  49. S.L. Ho and S. Yang, "Multiobjective Synthesis of Antenna Arrays Using a Vector Tabu Search Algorithm," in IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 947- 950, 2009. otwiera się w nowej karcie
  50. B. Aljibouri, A. Sambell, and B. Sharif, -Application of genetic algorithm to design of sequentially rotated circularly polarised dual-feed microstrip patch antenna array,‖ Electronics Lett., vol. 44, no. 12, pp. 708-709, 2008. otwiera się w nowej karcie
  51. S. Koziel and A. Bekasiewicz, -Rapid simulation-driven multiobjective design optimization of decomposable compact microwave passives,‖ IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2454-2461, 2016. otwiera się w nowej karcie
  52. T.W. Simpson, J.D. Pelplinski, P.N. Koch, and J.K. Allen, -Metamodels for computer- based engineering design: survey and recommendations‖, Engineering with Computers, vol. 17, pp. 129-150, 2001. otwiera się w nowej karcie
  53. S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, -Efficient multi-objective simulation-driven antenna design using co-kriging,‖ IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5900-5905, 2014. otwiera się w nowej karcie
  54. S. Koziel, A. Bekasiewicz, and W. Zieniutycz, -Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces,‖ IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 631-634, 2014. otwiera się w nowej karcie
  55. S. Koziel and A. Bekasiewicz, -Fast multiobjective optimization of narrowband antennas using RSA models and design space reduction,‖ IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 450-453, 2015. otwiera się w nowej karcie
  56. S. Koziel and A. Bekasiewicz, -Domain segmentation for low-cost surrogate-assisted multi-objective design optimization of antennas,‖ to appear, IET Microwaves, Antennas & Propagation, 2018. otwiera się w nowej karcie
  57. S. Koziel, A. Bekasiewicz, and S. Szczepanski, -Multi-objective design optimization of antennas for reflection, size and gain variability using kriging surrogates and generalized domain segmentation,‖ International Journal of RF and Microwave Computer-Aided Engineering, vol. 28, no. 5, pp. 1-11, 2018. otwiera się w nowej karcie
  58. A. Bekasiewicz and S. Koziel, -Miniaturized uniplanar triple-band slot dipole antenna with folded radiator,‖ Microwave and Optical Technology Letters, vol. 60, no. 2, pp. 386-389, 2018. otwiera się w nowej karcie
  59. A. Bekasiewicz, S. Koziel, and B. Pankiewicz, -Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping,‖ IET Microwaves, Antennas & Propagation, vol. 9, no. 7, pp. 618-626, 2015. otwiera się w nowej karcie
  60. K. Tan, E. Khor, and T. Lee, Multiobjective Evolutionary Algorithms and Applications, series Advanced Information and Knowledge Processing. London: Springer, 2005. otwiera się w nowej karcie
  61. A.I. Forrester, A. Sobester, and A.J. Keane, Engineering Design via Surrogate Modelling: A Practical Guide. Chichester: John Wiley & Sons, 2008.
  62. D. Gorissen, I. Couckuyt, E. Laermans, et al. -Multiobjective global surrogate modeling, dealing with the 5-percent problem,‖ Engineering with Computers, vol. 26, no. 1, pp. 81- 98, 2010. otwiera się w nowej karcie
  63. B. Beachkofski and R. Grandhi, -Improved distributed hypercube sampling,‖ American Institute of Aeronautics and Astronautics, paper AIAA 2002-1274, 2002. otwiera się w nowej karcie
  64. P. Kurgan, A. Bekasiewicz, and M. Kitlinski, -On the low-cost design of abbreviated multi-section planar matching transformer,‖ Microwave and Optical Technology Letters, vol. 57, no. 3, pp. 521-525, 2015. otwiera się w nowej karcie
  65. CST Microwave Studio, ver. 2013, Dassault Systems, 10 rue Marcel Dassault, CS 40501, Vélizy-Villacoublay Cedex, France, 2013.
  66. Sonnet, ver. 14.54, Sonnet Software, Elwood Davis Road 100, North Syracuse, NY 13212, 2013. otwiera się w nowej karcie
  67. P.D. Hough, T.G. Kolda, and V.J. Torczon, -Asynchronous parallel pattern search for nonlinear optimization,‖ SIAM J. Sci. Comput., vol. 23, no. 1, pp. 134-156, 2001. otwiera się w nowej karcie
  68. Palaniswamy, S.K., Panneer, Y., Nabi Alsath, M.G., Kanagasabai, M., Kingsly, S., Subbaraj, S.: -3D eight-port ultra-wideband (UWB) antenna array for diversity applications,‖ IEEE Ant. Wireless Prop. Lett., 2016. otwiera się w nowej karcie
  69. A. Conn, N.I.M. Gould, P.L. Toint, Trust-region methods, MPS-SIAM Series on Optimization, Philadelphia, 2000. otwiera się w nowej karcie
  70. M.A. Haq, S. Koziel, and Q.S. Cheng, -EM-driven size reduction of UWB antennas with ground plane modifications,‖ Int. Applied Computational Electromagnetics Society (ACES China) Symposium, 2017.
  71. This is an author-created, un-copyedited version of an article accepted for publication in ENGINEERING COMPUTATIONS under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 16 razy

Publikacje, które mogą cię zainteresować

Meta Tagi