From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland - Publikacja - MOST Wiedzy

Wyszukiwarka

From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland

Abstrakt

Flood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Networks (ANN), were evaluated for handling complex, nonlinear data using a dataset of 265 urban flood episodes. An ensemble filter feature selection (EFFS) approach was introduced to overcome the single-method feature selection limitations, optimising the selection of factors contributing to flood susceptibility. Additionally, the study incorporates explainable artificial intelligence (XAI), namely, the Shapley Additive exPlanations (SHAP) model, to enhance the transparency and interpretability of the modelling results. The models’ performance was evaluated using various statistical measures on a testing dataset. The ANN model demonstrated a superior performance, outperforming the RF and the SVM. SHAP analysis identified rainwater collectors, land surface temperature (LST), digital elevation model (DEM), soil, river buffers, and normalized difference vegetation index (NDVI) as contributors to flood susceptibility, making them more understandable and actionable for stakeholders. The findings highlight the need for tailored flood management strategies, offering a novel approach to urban flood forecasting that emphasises predictive power and model explainability.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Remote Sensing nr 16,
ISSN: 2072-4292
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Gulshad K., Yaseen A., Szydłowski M.: From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland// Remote Sensing -,iss. 16(20) (2024), s.3902-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs16203902
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 19 razy

Publikacje, które mogą cię zainteresować

Meta Tagi