Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance - Publikacja - MOST Wiedzy

Wyszukiwarka

Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance

Abstrakt

Wastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP influent flow. Four scenarios based on FS suggestions were defined and compared by three supervised Machine Learning (ML) algorithms, i.e. Artificial Neural Network (ANN), Random Forest (RF), and especially Gradient Boosting Machine (GBM). Input parameters, as daily time-series including pH, DO, COD, BOD, MLSS, MLVSS, NH4-N, and TN concentration, were used. Data set divided into train and unseen test data-sets, and performance precision of all models was carried out based on Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and correlation coefficient (R2). Results reveal that scenario IV which was suggested by Mutual Information, including NH4-N, COD, BOD, and DO had the best result rather than other FS methods. Furthermore, decision tree algorithms (RF and GBM) revealed better performance results in comparison to neural network algorithm (ANN). GBM generalized the dataset patterns very well and produced the best performance on unseen data-set, which shows the effectiveness of this state-of-the-art ML algorithm for wastewater components prediction.

Cytowania

  • 1 4 3

    CrossRef

  • 0

    Web of Science

  • 1 5 2

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Water Process Engineering nr 41,
ISSN: 2214-7144
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Bagherzadeh F., Mehrani M. J., Basirifard M., Roostaei J.: Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance// Journal of Water Process Engineering -Vol. 41, (2021), s.102033-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jwpe.2021.102033
Weryfikacja:
Politechnika Gdańska

wyświetlono 184 razy

Publikacje, które mogą cię zainteresować

Meta Tagi