Abstrakt
Lymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better disease monitoring and faster analysis of the general immune system condition. In this study, the impact of visual quality on the performance of state-of-the-art algorithms for detecting lymphocytes in medical images was examined. Two datasets were used, and image modifications such as blur, sharpness, brightness, and contrast were applied to assess the performance of YOLOv5 and RetinaNet models. The study revealed that the visual quality of images exerts a substantial impact on the effectiveness of the deep learning methods in detecting lymphocytes accurately. These findings have significant implications for deep learning approaches used in digital pathology.
Cytowania
-
1
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Polejowska A., Sobotka M., Kalinowski M., Kordowski M., Neumann T.: Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms// The Latest Developments and Challenges in Biomedical Engineering/ : , 2024, s.41-53
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-38430-1_4
- Źródła finansowania:
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 126 razy
Publikacje, które mogą cię zainteresować
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
- W. Nazar,
- K. Nazar,
- L. Daniłowicz-Szymanowicz
Efficiency Increasing of No-reference Image Quality Assessment in UAV Applications
- K. P. Okarma,
- K. Egiazarian,
- O. Ieremeiev
- + 1 autorów