Improved Empirical Coefficients for Estimating Water Vapor Weighted Mean Temperature over Europe for GNSS Applications - Publikacja - MOST Wiedzy


Improved Empirical Coefficients for Estimating Water Vapor Weighted Mean Temperature over Europe for GNSS Applications


Development of the so-called global navigation satellite system (GNSS) meteorology is based on the possibility of determining a precipitable water vapor (PWV) from a GNSS zenith wet delay (ZWD). Conversion of ZWD to the PWV requires application of water vapor weighted mean temperature (Tm) measurements, which can be done using a surface temperature (Ts) and its linear dependency to the Tm. In this study we analyzed up to 24 years (1994–2018) of data from 49 radio-sounding (RS) stations over Europe to determine reliable coefficients of the Tm-Ts relationship. Their accuracy was verified using 109 RS stations. The analysis showed that for most of the stations, there are visible differences between coefficients estimated for the time of day and night. Consequently, the ETm4 model containing coefficients determined four times a day is presented. For hours other than the primary synoptic hours, linear interpolation was used. However, since this approach was not enough in some cases, we applied the dependence of Tm-Ts coefficients on the time of day using a polynomial (ETmPoly model). This resulted in accuracy at the level of 2.8 ± 0.3 K. We also conducted an analysis of the impact of this model on the PWV GNSS. Analysis showed that differences in PWV reached 0.8 mm compared to other commonly used models.


  • 3


  • 2

    Web of Science

  • 2


Cytuj jako

Pełna treść

pobierz publikację
pobrano 26 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Remote Sensing nr 11, strony 1 - 15,
ISSN: 2072-4292
Rok wydania:
Opis bibliograficzny:
Baldysz Z., Nykiel G.: Improved Empirical Coefficients for Estimating Water Vapor Weighted Mean Temperature over Europe for GNSS Applications// Remote Sensing. -Vol. 11, iss. 17 (2019), s.1-15
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs11171995
Bibliografia: test
  1. Bevis, M.; Businger, S.; Herring, A.T.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787-15801, doi:10.1029/92JD01517. otwiera się w nowej karcie
  2. Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385-5406, doi:10.5194/amt-9-5385-2016. otwiera się w nowej karcie
  3. Priego, E.; Jones, J.; Porres, M.J.; Seco, A. Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area. Geomat. Nat. Hazards Risk 2017, 8, 282-294, doi:10.1080/19475705.2016.1201150. otwiera się w nowej karcie
  4. Nykiel, G.; Figurski, M.; Baldysz, Z. Analysis of GNSS sensed precipitable water vapour and tropospheric gradients during the derecho event in Poland of 11th August 2017. J. Atmos. Sol. Terr. Phys. 2019, doi:10.1016/j.jastp.2019.105082. otwiera się w nowej karcie
  5. Gradinarsky, L.P.; Johansson, J.M.; Bouma, H.R.; Scherneck, H.G.; Elgered, G. Climate monitoring using GPS. Phys. Chem. Earth 2002, 27, 225-340, doi:10.1016/S1474-706500009-8. otwiera się w nowej karcie
  6. Nilsson, T.; Elgered, G. Long-term trends in the atmospheric water vapor content estimated from groundbased GPS data. J. Geophys. Res.-Atmos. 2008, 113, D19101, doi:10.1029/2008JD010110. otwiera się w nowej karcie
  7. Bianchi, C.E.; Mendoza, L.P.O.; Fernández, L.I.; Natali, M.P.; Meza, A.M.; Moirano, J.F. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies. Ann. Geophys. 2016, 34, 623-639, doi:10.5194/angeo-34-623-2016. otwiera się w nowej karcie
  8. Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223-234, doi:10.1007/s00585-000-0223-7. otwiera się w nowej karcie
  9. Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Ranging Satellites. In The Use of Artificial Satellites for Geodesy. Geophysical Monograph Series; otwiera się w nowej karcie
  10. American Geophysical Union: Washington, DC, USA, 1972; pp. 247-251, doi:10.1029/GM015p0247. otwiera się w nowej karcie
  11. Braun, J.J.; Van Hove, T. Recent Improvements in the Retrieval of Precipitable Water Vapor. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005) 2005, Long Beach, CA, September 2005, pp. 298-301.
  12. Mendes, V.B.; Langley, R.B. Tropospheric zenith delay prediction accuracy for high-precision GPS positioning and navigation. Navigation 1999, 46, 25-34, doi:10.1002/j.2161-4296.1999.tb02393.x. otwiera się w nowej karcie
  13. Ross, R.J.; Rosenfeld, S. Estimating mean weighted temperature of the atmosphere for Global Positioning System. J. Geophys. Res. 1997, 102, 21719-21730, doi:10.1029/97JD01808. otwiera się w nowej karcie
  14. Emardson, T.R.; Elgered, G.; Johansson, J.M. Three months of continuous monitoring of atmospheric water vapour with a network of Global Positioning System receivers. J. Geophys. Res. 1998, 103, 1807-1820, doi:10.1029/97JD03015. otwiera się w nowej karcie
  15. Solbrig, P. Untersuchungen uber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems. Ph.D. Thesis, Institute of Geodesy and Navigation, University FAF Munich, Munich, Germany, 2000.
  16. Liou, Y.; Teng, Y.; Van Hove, T.; Liljegren, J.C. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol. 2001, 40, 5-15, doi:10.1175/1520-0450040<0005:COPWOI>2.0.CO;2. otwiera się w nowej karcie
  17. Baltink, H.K.; Van Der Marel, H.; Van Der Hoeven, A.G.A. Integrated atmospheric water vapour estimates from a regional GPS network. J. Geophys. Res. 2002, 107, ACL 3-1-ACL 3-8, doi:10.1029/2000JD000094. otwiera się w nowej karcie
  18. Bokoye, A.I.; Royer, A.; O'Neill, N.T.; Cliché, P.; McArthur, L.J.B.; Teillet, P.M. Thériault, J.M. Multisensor analysis of integrated atmospheric water vapour over Canada and Alaska. J. Geophys. Res. 2003, 108, 15, 21¨C1-21-16, doi:10.1029/2002JD002721. otwiera się w nowej karcie
  19. Suresh Raju, C.; Saha, K.; Thampi, B.V.; Parameswaran, K. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapour from ground based GPS measurements. Ann. Geophys. 2007, 25, 1935-1948, doi:10.5194/angeo-25-1935-2007. otwiera się w nowej karcie
  20. Sapucci, L.F. Evaluation of modeling water-vapour-weighted mean tropospheric temperature for GNSS-integrated water vapour estimates in Brazil. J. Appl. Meteorol. Clim. 2014, 53, 715-730, doi:10.1175/JAMC-D-13-048.1. otwiera się w nowej karcie
  21. Mekik, C.; Deniz, I. Modelling and validation of the weighted mean temperature for Turkey. Meteorol. Appl. 2017, 24, 92-100, doi:10.1002/met.1608. otwiera się w nowej karcie
  22. Liu, J.; Yao, Y.; Sang, J. A new weighted mean temperature model in China. Adv. Space Res. 2018, 61, 402-412, doi:10.1016/j.asr.2017.09.023. otwiera się w nowej karcie
  23. Zhang, F.; Barriot, J.-P.; Xu, G.; Yeh, T.-K. Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case. Remote Sens. 2018, 10, 758, doi:10.3390/rs10050758. otwiera się w nowej karcie
  24. Schueler, T.; Posfay, A.; Hein, G.W.; Biberger, R. A Global Analysis of the Mean Atmospheric Temperature for GPS Water Vapor Estimation. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 11-14 September 2001; pp. 2476-2489.
  25. Yao, Y.; Zhu, S.; Yue, S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J. Geod. 2012, 86, 1125-1135, doi:10.1007/s00190-012-0568-1. otwiera się w nowej karcie
  26. Lan, Z.; Zhang, B.; Geng, Y. Establishment and analysis of global gridded Tm-Ts relationship model. Geod. Geodyn. 2016, 7, 101-107, doi:10.1016/j.geog.2016.02.001. otwiera się w nowej karcie
  27. Yao. Y.; Zhang, B.; Xu, C.; Chen, J. Analysis of the global Tm-Ts correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. 2014, 59, 2340-2347, doi:10.1007/s11434-014-0275-9. otwiera się w nowej karcie
  28. Rüger, J.M. Refractive Index Formulae for Radio Waves. In Proceedings of the FIG XXII International Congress, Washington, DC, USA, 19-26 April 2002. otwiera się w nowej karcie
  29. Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017. Available online: (20 July 2019). otwiera się w nowej karcie
  30. Baldysz, Z.; Nykiel, G.; Figurski, M.; Araszkiewicz, A. Assessment of the impact of GNSS processing strategies on the long-term parameters of 20 years IWV time series. Remote Sens. 2018, 10, 496, doi:10.3390/rs10040496. otwiera się w nowej karcie
  31. Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304, doi:10.1029/2005GL025546. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 87 razy

Publikacje, które mogą cię zainteresować

Meta Tagi