Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s - Publikacja - MOST Wiedzy

Wyszukiwarka

Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s

Abstrakt

In this work, two polyesters and four copolyesters were studied. All materials were synthesized to obtain the monomers dedicated for thermoplastic polyurethane elastomers. For this type of PUR, the monomers should characterize by appropriate selected physicochemical properties and macromolecular structure distribution, which depends on synthesis conditions. The study of chemical structure with extensive and knowledgeable analysis of formed macromolecules of synthesized bio-based copolyesters was conducted with the use of FTIR and 1H NMR spectroscopy and MALDI-ToF mass spectrometry. The results allowed to propose the majority of probable chemical structures of macromolecules formed during synthesis. Moreover, the impact of the structure on the thermal stability of the obtained copolyesters was also determined with the use of thermogravimetric analysis. The temperature of the beginning of thermal decomposition equaled even 330oC. Furthermore, the results of DSC-TG/QMS coupled method confirmed that all prepared polyesters degraded by α and β-hydrogen bond scission mechanisms.

Cytowania

  • 2

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 39 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
POLYMER TESTING nr 83,
ISSN: 0142-9418
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Parcheta P., Datta J.: Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s// POLYMER TESTING -Vol. 83, (2020), s.106337-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.polymertesting.2020.106337
Bibliografia: test
  1. P. Parcheta, J. Datta, Environmental impact and industrial development of biorenewable resources for polyurethanes, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1986-2016, https://doi.org/10.1080/10643389.2017.1400861. otwiera się w nowej karcie
  2. M. Ionescu, Chemistry and Technology of Polyols for Polyurethane, First Edit, Rapra Technology Limited, United Kingdom, 2005, https://doi.org/10.1002/ pi.2159. otwiera się w nowej karcie
  3. A. Prociak, G. Rokicki, J. Ryszkowska, Materiały Poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa, 2014.
  4. P. Kr� ol, B. Pilch-Pitera, Urethane oligomers as raw materials and intermediates for polyurethane elastomers. Methods for synthesis, structural studies and analysis of chemical composition, Polymer 44 (2003) 5075-5101, https://doi.org/10.1016/ S0032-3861(03)00431-2. otwiera się w nowej karcie
  5. A. Saralegi, L. Rueda, B. Fern� andez-D'Arlas, I. Mondragon, A. Eceiza, M. A. Corcuera, Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties, Polym. Int. 62 (2013) 106-115, https://doi.org/10.1002/pi.4330. otwiera się w nowej karcie
  6. A. Eceiza, K. De La Caba, G. Kortaberria, N. Gabilondo, C. Marieta, M.A. Corcuera, I. Mondragon, Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4'-diphenylmethane diisocyanate, Eur. Polym. J. 41 (2005) 3051-3059, https://doi.org/10.1016/j. eurpolymj.2005.06.022. otwiera się w nowej karcie
  7. B. Tan, S. Bi, K. Emery, M.J. Sobkowicz, Bio-based poly(butylene succinate-co- hexamethylene succinate) copolyesters with tunable thermal and mechanical properties, Eur. Polym. J. 86 (2017) 162-172, https://doi.org/10.1016/j. eurpolymj.2016.11.017. otwiera się w nowej karcie
  8. G.Z. Papageorgiou, D.G. Papageorgiou, Solid-state structure and thermal characteristics of a sustainable biobased copolymer: poly(butylene succinate-co- furanoate), Thermochim. Acta 656 (2017) 112-122, https://doi.org/10.1016/j. tca.2017.09.004. otwiera się w nowej karcie
  9. Y. Jiang, A.J.J. Woortman, G.O.R. Alberda van Ekenstein, D.M. Petrovi� c, K. Loos, Enzymatic synthesis of biobased polyesters using 2,5-Bis(hydroxymethyl)furan as the building block, Biomacromolecules 15 (2014) 2482-2493, https://doi.org/ 10.1021/bm500340w. otwiera się w nowej karcie
  10. P. Parcheta, J. Datta, Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach, Polym. Degrad. Stab. 155 (2018) 238-249, https://doi.org/10.1016/j.polymdegradstab.2018.07.025. otwiera się w nowej karcie
  11. P. Parcheta, I. Koltsov, J. Datta, Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis, Polym. Degrad. Stab. 151 (2018) 90-99, https://doi.org/10.1016/j. polymdegradstab.2018.03.002. otwiera się w nowej karcie
  12. P. Parcheta, J. Datta, Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes -synthesis and investigation, Polym. Test. 67 (2018) 110-121, https://doi.org/10.1016/j.polymertesting.2018.02.022. otwiera się w nowej karcie
  13. P. Parcheta, J. Datta, Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts, J. Therm. Anal. Calorim. 130 (2017) 197-206, https://doi.org/10.1007/s10973- 017-6376-3. otwiera się w nowej karcie
  14. N.O. Pretorius, K. Rode, J.M. Simpson, H. Pasch, Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix- assisted laser desorption/ionization mass spectrometry, Anal. Chim. Acta 808 (2014) 94-103, https://doi.org/10.1016/j.aca.2013.07.030. otwiera się w nowej karcie
  15. J.C. Soutif, N.T.H. Doan, V. Montembault, Determination by MALDI-TOF MS of the structures obtained from polytransesterification of diethyl 2,6-pyridinedicarboxy- late and poly(ethylene glycol), Eur. Polym. J. 42 (2006) 126-132, https://doi.org/ 10.1016/j.eurpolymj.2005.07.026. otwiera się w nowej karcie
  16. Ł. Kolek, M. Massalska-Arod� z, K. Adrjanowicz, T. Rozwadowski, K. Dychto� n, M. Drajewicz, P. Kula, Molecular dynamics and cold crystallization process in a liquid-crystalline substance with para-, ferro-and antiferro-electric phases as studied by dielectric spectroscopy and scanning calorimetry, J. Mol. Liq. (2019) 111913, https://doi.org/10.1016/j.molliq.2019.111913. otwiera się w nowej karcie
  17. L. Yu, H. Liu, K. Dean, L. Chen, Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide, J. Polym. Sci., Part B: Polym. Phys. 46 (2008) 2630-2636, https://doi.org/10.1002/polb. otwiera się w nowej karcie
  18. A. Hammer, Thermal Analysis of Polymers Selected Applications, Mettler Toledo, (n.d).
  19. E. Fortunati, I. Armentano, Q. Zhou, D. Puglia, A. Terenzi, L.A. Berglund, J. M. Kenny, Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose, Polym. Degrad. Stab. 97 (2012) 2027-2036, https://doi.org/10.1016/j. polymdegradstab.2012.03.027. otwiera się w nowej karcie
  20. C.J. Tsai, W.C. Chang, C.H. Chen, H.Y. Lu, M. Chen, Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol, Eur. Polym. J. 44 (2008) 2339-2347, https://doi.org/10.1016/j. eurpolymj.2008.05.002. otwiera się w nowej karcie
  21. G.Z. Papageorgiou, D.N. Bikiaris, Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study, Polymer 46 (2005) 12081-12092, https://doi.org/10.1016/j.polymer.2005.10.073. otwiera się w nowej karcie
  22. X. Hu, T. Su, W. Pan, P. Li, Z. Wang, Difference in solid-state properties and enzymatic degradation of three kinds of poly(butylene succinate)/cellulose blends, RSC Adv. 7 (2017) 35496-35503, https://doi.org/10.1039/c7ra04972b. otwiera się w nowej karcie
  23. C.C. Yang, Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte, Mater. Lett. 58 (2003) 33-38, https://doi.org/10.1016/ S0167-577X(03)00409-9. otwiera się w nowej karcie
  24. S.S. Nagane, S. Verma, B.V. Tawade, P.S. Sane, S.A. Dhanmane, P.P. Wadgaonkar, Aromatic polyesters containing pendant azido groups: synthesis, characterization, chemical modification and thermal cross-linking, Eur. Polym. J. 116 (2019) 180-189, https://doi.org/10.1016/j.eurpolymj.2019.04.019. otwiera się w nowej karcie
  25. D.N. Bikiaris, K. Chrissafis, K.M. Paraskevopoulos, Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis -gas chromatography -mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst, Polym. Degrad. Stab. 92 (2007) 525-536, https://doi.org/10.1016/j.polymdegradstab.2007.01.022. otwiera się w nowej karcie
  26. K. Chrissafis, K.M. Paraskevopoulos, G.Z. Papageorgiou, D.N. Bikiaris, Thermal decomposition of poly (propylene sebacate) and poly (propylene azelate) biodegradable polyesters: evaluation of mechanisms using TGA, FTIR and GC/MS, J. Anal. Appl. Pyrolysis 92 (2011) 123-130, https://doi.org/10.1016/j. jaap.2011.05.001. otwiera się w nowej karcie
  27. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate), Polym. Degrad. Stab. 91 (2006) 60-68, https://doi.org/10.1016/j.polymdegradstab.2005.04.028. otwiera się w nowej karcie
  28. Z. Terzopoulou, V. Tsanaktsis, M. Nerantzaki, G.Z. Papageorgiou, D.N. Bikiaris, Decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and aliphatic diols with medium and long chain methylene groups, Polym. Degrad. Stab. 132 (2016) 127-136, https://doi.org/10.1016/j. polymdegradstab.2016.03.006. otwiera się w nowej karcie
  29. Z. Terzopoulou, V. Tsanaktsis, M. Nerantzaki, D.S. Achilias, T. Vaimakis, G. Z. Papageorgiou, D.N. Bikiaris, Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols, J. Anal. Appl. Pyrolysis 117 (2016) 162-175, https://doi.org/10.1016/j.jaap.2015.11.016. otwiera się w nowej karcie
  30. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study, Thermochim. Acta 435 (2005) 142-150, https://doi.org/10.1016/j. tca.2005.05.011. otwiera się w nowej karcie
  31. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly (ethylene succinate), Thermochim. Acta 440 (2006) 166-175, https://doi.org/10.1016/j. tca.2005.11.002. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 35 razy

Publikacje, które mogą cię zainteresować

Meta Tagi