Local and global response of sandwich beams made of GFRP facings and PET foam core in three point bending test - Publikacja - MOST Wiedzy

Wyszukiwarka

Local and global response of sandwich beams made of GFRP facings and PET foam core in three point bending test

Abstrakt

In the paper behaviour of laminated sandwich beams (FRP face sheet – PET foam core – FRP face sheet) subjected to three point bending is studied. The paper aim is to find practical descriptions enabling effective and accurate estimation of the elastic response, damage and failure of the beams, basing on experiments and static calculations. Therefore a number of tests are described, that were done on laminated coupons and foam specimens in order to choose appropriate material models and find their constants. Experimental results of three-point bending tests of sandwich beams with three types of PET cores are analysed to evaluate the chosen material laws. The beam responses are predicted in numerical static simulations. The equations of problem are solved by means of finite element method (FEM). In the end the experimental and FEM results are compared. They are similar in terms of both their quantity and quality.

Cytowania

  • 3

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
COMPOSITE STRUCTURES nr 241,
ISSN: 0263-8223
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Pyrzowski Ł., Sobczyk B.: Local and global response of sandwich beams made of GFRP facings and PET foam core in three point bending test// COMPOSITE STRUCTURES -Vol. 241, (2020), s.112122-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.compstruct.2020.112122
Bibliografia: test
  1. Al-saadi AU, Aravinthan T, Lokuge W. Structural applications of fibre reinforced polymer (FRP) composite tubes: A review of columns members. Compos Struct 2018;204:513-24. doi:10.1016/j.compstruct.2018.07.109. otwiera się w nowej karcie
  2. Kabir SMF, Mathur K, Seyam A-FM. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Compos Struct 2020;232:111476. doi:10.1016/j.compstruct.2019.111476. otwiera się w nowej karcie
  3. Kim YJ. State of the practice of FRP composites in highway bridges. Eng Struct 2019;179:1-8. doi:10.1016/j.engstruct.2018.10.067. otwiera się w nowej karcie
  4. Parghi A, Alam MS. A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector. Compos Struct 2018;187:518-34. doi:10.1016/j.compstruct.2017.11.085. otwiera się w nowej karcie
  5. Burzyński S, Chróścielewski J, Daszkiewicz K, Witkowski W. Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. otwiera się w nowej karcie
  6. Compos Part B Eng 2016;107:203-13. doi:10.1016/j.compositesb.2016.09.015. otwiera się w nowej karcie
  7. Moleiro F, Carrera E, Ferreira AJM, Reddy JN. Hygro-thermo-mechanical modelling and analysis of multilayered plates with embedded functionally graded material layers. Compos Struct 2019:111442. doi:10.1016/j.compstruct.2019.111442. otwiera się w nowej karcie
  8. Nguyen LB, Nguyen N V., Thai CH, Ferreira AMJ, Nguyen-Xuan H. An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos Struct 2019;214:227-45. doi:10.1016/j.compstruct.2019.01.077. otwiera się w nowej karcie
  9. Sabik A. Progressive failure analysis of laminates in the framework of 6-field non-linear shell theory. Compos Struct 2018;200:195-203. doi:10.1016/j.compstruct.2018.05.069. otwiera się w nowej karcie
  10. Sofiyev AH. The stability analysis of shear deformable FGM sandwich conical shells under the axial load. Compos Struct 2017;176:803-11. doi:10.1016/j.compstruct.2017.06.022. otwiera się w nowej karcie
  11. Arslan K, Gunes R. Experimental damage evaluation of honeycomb sandwich structures with otwiera się w nowej karcie
  12. Al/B4C FGM face plates under high velocity impact loads. Compos Struct 2018;202:304-12. doi:10.1016/j.compstruct.2018.01.087. otwiera się w nowej karcie
  13. Chróścielewski J, Ferenc T, Mikulski T, Miśkiewicz M, Pyrzowski Ł. Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP footbridge. Compos Struct 2019;213:299-307. doi:10.1016/j.compstruct.2019.01.089. otwiera się w nowej karcie
  14. Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, Rucka M, Sobczyk B, Wilde K. Modal properties identification of a novel sandwich footbridge -Comparison of measured dynamic response and FEA. Compos Part B Eng 2018;151:245-55. doi:10.1016/j.compositesb.2018.06.016. otwiera się w nowej karcie
  15. Kulpa M, Siwowski T. Stiffness and strength evaluation of a novel FRP sandwich panel for bridge redecking. Compos Part B Eng 2019;167:207-20. doi:10.1016/j.compositesb.2018.12.004. otwiera się w nowej karcie
  16. Mazurkiewicz Ł, Małachowski J, Damaziak K, Tomaszewski M. Evaluation of the response of fibre reinforced composite repair of steel pipeline subjected to puncture from excavator tooth. otwiera się w nowej karcie
  17. Compos Struct 2018;202:1126-35. doi:10.1016/j.compstruct.2018.05.065. otwiera się w nowej karcie
  18. Siwowski T, Kulpa M, Rajchel M, Poneta P. Design, manufacturing and structural testing of all- composite FRP bridge girder. Compos Struct 2018;206:814-27. doi:10.1016/j.compstruct.2018.08.048. otwiera się w nowej karcie
  19. Tuwair H, Drury J, Volz J. Testing and evaluation of full scale fiber-reinforced polymer bridge deck panels incorporating a polyurethane foam core. Eng Struct 2019;184:205-16. doi:10.1016/j.engstruct.2019.01.104. otwiera się w nowej karcie
  20. Zhang D, Zhao Q, Li F, Tao J, Gao Y. Torsional behavior of a hybrid FRP-aluminum space truss bridge: Experimental and numerical study. Eng Struct 2018;157:132-43. doi:10.1016/j.engstruct.2017.12.013. otwiera się w nowej karcie
  21. Debski H, Rozylo P, Gliszczynski A, Kubiak T. Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression. Thin-Walled Struct 2019;139:53-65. doi:10.1016/j.tws.2019.02.030. otwiera się w nowej karcie
  22. Debski H, Teter A. Effect of load eccentricity on the buckling and post-buckling states of short laminated Z-columns. Compos Struct 2019;210:134-44. doi:10.1016/j.compstruct.2018.11.044. otwiera się w nowej karcie
  23. Kamocka M, Mania RJ. Post-buckling response of FML column with delamination. Compos Struct 2019;230:111511. doi:10.1016/j.compstruct.2019.111511. otwiera się w nowej karcie
  24. Mao J-J, Zhang W. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos Struct 2019;216:392-405. doi:10.1016/j.compstruct.2019.02.095. otwiera się w nowej karcie
  25. Kolanu NR, Raju G, Ramji M. Experimental and numerical studies on the buckling and post- buckling behavior of single blade-stiffened CFRP panels. Compos Struct 2018;196:135-54. doi:10.1016/j.compstruct.2018.05.015. otwiera się w nowej karcie
  26. Xanthos M, Dhavalikar R, Tan V, Dey SK, Yilmazer U. Properties and Applications of Sandwich Panels Based on PET Foams. J Reinf Plast Compos 2001;20:786-93. doi:10.1177/073168401772678562. otwiera się w nowej karcie
  27. Fathi A, Keller J-H, Altstaedt V. Full-field shear analyses of sandwich core materials using Digital Image Correlation (DIC). Compos Part B Eng 2015;70:156-66. doi:10.1016/j.compositesb.2014.10.045. otwiera się w nowej karcie
  28. Manalo A, Surendar S, van Erp G, Benmokrane B. Flexural behavior of an FRP sandwich system with glass-fiber skins and a phenolic core at elevated in-service temperature. Compos Struct 2016;152:96-105. doi:10.1016/j.compstruct.2016.05.028. otwiera się w nowej karcie
  29. Caliskan U, Apalak MK. Low velocity bending impact behavior of foam core sandwich beams: Experimental. Compos Part B Eng 2017;112:158-75. doi:10.1016/j.compositesb.2016.12.038. otwiera się w nowej karcie
  30. Akil Hazizan M, Cantwell WJ. The low velocity impact response of foam-based sandwich structures. Compos Part B Eng 2002;33:193-204. doi:10.1016/S1359-8368(02)00009-4. otwiera się w nowej karcie
  31. Mathieson H, Fam A. High cycle fatigue under reversed bending of sandwich panels with GFRP skins and polyurethane foam core. Compos Struct 2014;113:31-9. doi:10.1016/j.compstruct.2014.02.027. otwiera się w nowej karcie
  32. Iyer SV, Chatterjee R, Ramya M, Suresh E, Padmanabhan K. A Comparative Study Of The Three Point And Four Point Bending Behaviour Of Rigid Foam Core Glass/Epoxy Face Sheet Sandwich Composites. Mater Today Proc 2018;5:12083-90. doi:10.1016/j.matpr.2018.02.184. otwiera się w nowej karcie
  33. Garrido M, Correia JR, Keller T. Effects of elevated temperature on the shear response of PET and PUR foams used in composite sandwich panels. Constr Build Mater 2015;76:150-7. doi:10.1016/j.conbuildmat.2014.11.053. otwiera się w nowej karcie
  34. CoDyre L, Fam A. The effect of foam core density at various slenderness ratios on axial strength of sandwich panels with glass-FRP skins. Compos Part B Eng 2016;106:129-38. doi:10.1016/j.compositesb.2016.09.016. otwiera się w nowej karcie
  35. Zhou J, Hassan MZ, Guan Z, Cantwell WJ. The low velocity impact response of foam-based sandwich panels. Compos Sci Technol 2012;72:1781-90. doi:10.1016/j.compscitech.2012.07.006. otwiera się w nowej karcie
  36. Long S, Yao X, Wang H, Zhang X. Failure analysis and modeling of foam sandwich laminates under impact loading. Compos Struct 2018;197:10-20. doi:10.1016/j.compstruct.2018.05.041. otwiera się w nowej karcie
  37. Tuwair H, Hopkins M, Volz J, ElGawady MA, Mohamed M, Chandrashekhara K, et al. Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Compos Part B Eng 2015;79:262-76. doi:10.1016/j.compositesb.2015.04.023. otwiera się w nowej karcie
  38. Arruda MRT, Garrido M, Castro LM., Ferreira AJM, Correia JR. Numerical modelling of the creep behaviour of GFRP sandwich panels using the Carrera Unified Formulation and Composite Creep Modelling. Compos Struct 2018;183:103-13. doi:10.1016/j.compstruct.2017.01.074. otwiera się w nowej karcie
  39. Gebhart TMJ, Jehnichen D, Koschichow R, Müller M, Göbel M, Geske V, et al. Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams. otwiera się w nowej karcie
  40. Int J Eng Sci 2019;145:103168. doi:10.1016/j.ijengsci.2019.103168. otwiera się w nowej karcie
  41. Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, Sobczyk B, Wilde K. A novel sandwich footbridge -Practical application of laminated composites in bridge design and in situ measurements of static response. Compos Part B Eng 2017;126:153-61. doi:10.1016/j.compositesb.2017.06.009. otwiera się w nowej karcie
  42. Siwowski T, Rajchel M, Kaleta D, Własak L. The First Polish Road Bridge Made of FRP Composites. Struct Eng Int 2017;27:308-14. doi:10.2749/101686617X14881932436339. otwiera się w nowej karcie
  43. Obert E, Daghia F, Ladevèze P, Ballere L. Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization. Compos Struct 2014;117:212-21. doi:10.1016/j.compstruct.2014.06.035. otwiera się w nowej karcie
  44. Abu-Farsakh GAF, Al-Jarrah HM. Micro-mechanical damage model accounting for composite material nonlinearity due to matrix-cracking of unidirectional composite laminates. Compos Sci Technol 2018;167:268-76. doi:10.1016/j.compscitech.2018.08.012. otwiera się w nowej karcie
  45. Reis EM, Rizkalla SH. Material characteristics of 3-D FRP sandwich panels. Constr Build Mater 2008;22:1009-18. doi:10.1016/j.conbuildmat.2007.03.023. otwiera się w nowej karcie
  46. Sabik A. Direct shear stress vs strain relation for fiber reinforced composites. Compos Part B Eng 2018;139:24-30. doi:10.1016/j.compositesb.2017.11.057. otwiera się w nowej karcie
  47. ISO 527-1:2019 Plastics -Determination of tensile properties -Part 1: General principles, n.d. otwiera się w nowej karcie
  48. ISO 527-4:1997 Plastics -Determination of tensile properties -Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, n.d. otwiera się w nowej karcie
  49. ISO 527-5:2009 Plastics -Determination of tensile properties -Part 5: Test conditions for unidirectional fibre-reinforced plastic composites, n.d. otwiera się w nowej karcie
  50. ISO 14129:1997 Fibre-reinforced plastic composites -Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method, n.d. otwiera się w nowej karcie
  51. ISO 14126:1999 Fibre-reinforced plastic composites -Determination of compressive properties in the in-plane direction, n.d. otwiera się w nowej karcie
  52. Klasztorny M, Nycz DB, Romanowski RK, Gotowicki P, Kiczko A, Rudnik D. Effects of Operating Temperatures and Accelerated Environmental Ageing on the Mechanical Properties of a Glass- Vinylester Composite. Mech Compos Mater 2017;53:335-50. doi:10.1007/s11029-017-9665-9. otwiera się w nowej karcie
  53. Chróścielewski J, Klasztorny M, Nycz D, Sobczyk B. Load capacity and serviceability conditions for footbridges made of fibre-reinforced polymer laminates. Roads Bridg -Drog i Most 2014;13:189-202. doi:10.7409/rabdim.014.013. otwiera się w nowej karcie
  54. Yang B, Kozey V, Adanur S, Kumar S. Bending, compression, and shear behavior of woven glass fiber-epoxy composites. Compos Part B Eng 2000;31:715-21. doi:10.1016/S1359- 8368(99)00052-9. otwiera się w nowej karcie
  55. Wen C, Yazdani S. Anisotropic damage model for woven fabric composites during tension-tension fatigue. Compos Struct 2008;82:127-31. doi:10.1016/j.compstruct.2007.01.003. otwiera się w nowej karcie
  56. ISO 1926:2005 Rigid cellular plastics -Determination of tensile properties, n.d. otwiera się w nowej karcie
  57. ISO 1922:2018 Rigid cellular plastics -Determination of shear properties, n.d. otwiera się w nowej karcie
  58. ISO 844:2014 Rigid cellular plastics -Determination of compression properties, n.d. otwiera się w nowej karcie
  59. ASTM C273 / C273M -19 Standard Test Method for Shear Properties of Sandwich Core Materials, n.d. otwiera się w nowej karcie
  60. ASTM C297 / C297M -16 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions, n.d. otwiera się w nowej karcie
  61. ASTM C365 / C365M -16 Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, n.d. otwiera się w nowej karcie
  62. ArmaForm PET/W AC: structural foam core technical data 2014.
  63. Carlsson LA, Kardomateas GA. Structural and Failure Mechanics of Sandwich Composites. vol. 121. Dordrecht: Springer Netherlands; 2011. doi:10.1007/978-1-4020-3225-7. otwiera się w nowej karcie
  64. DIAB guide to core and sandwich 2012:1-48. https://www.diabgroup.com/~/media/Files/Manuals- Guides/Diab Guideline to Core and Sandwich.pdf. otwiera się w nowej karcie
  65. Tabrizi IE, Kefal A, Zanjani JSM, Akalin C, Yildiz M. Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory. Compos Struct 2019;223:110971. doi:10.1016/j.compstruct.2019.110971. otwiera się w nowej karcie
  66. Kubiak T, Samborski S, Teter A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Compos Struct 2015;133:921-9. doi:10.1016/j.compstruct.2015.08.023. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 102 razy

Publikacje, które mogą cię zainteresować

Meta Tagi